| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-equsaldv | Structured version Visualization version GIF version | ||
| Description: Deduction version of equsal 2422. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| wl-equsald.1 | ⊢ Ⅎ𝑥𝜑 |
| wl-equsald.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| wl-equsald.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| wl-equsaldv | ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-equsald.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 2 | 19.23t 2210 | . . 3 ⊢ (Ⅎ𝑥𝜒 → (∀𝑥(𝑥 = 𝑦 → 𝜒) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜒))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜒) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜒))) |
| 4 | wl-equsald.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 5 | wl-equsald.3 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | 5 | pm5.74d 273 | . . 3 ⊢ (𝜑 → ((𝑥 = 𝑦 → 𝜓) ↔ (𝑥 = 𝑦 → 𝜒))) |
| 7 | 4, 6 | albid 2222 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜒))) |
| 8 | ax6ev 1969 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 9 | 8 | a1bi 362 | . . 3 ⊢ (𝜒 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜒)) |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (𝜒 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜒))) |
| 11 | 3, 7, 10 | 3bitr4d 311 | 1 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: wl-sbid2ft 37546 |
| Copyright terms: Public domain | W3C validator |