Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sbid2ft Structured version   Visualization version   GIF version

Theorem wl-sbid2ft 37546
Description: A more general version of sbid2vw 2259. (Contributed by Wolf Lammen, 14-May-2019.)
Assertion
Ref Expression
wl-sbid2ft (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-sbid2ft
StepHypRef Expression
1 sb6 2085 . 2 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
2 nfnf1 2154 . . 3 𝑥𝑥𝜑
3 id 22 . . 3 (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑)
4 sbequ12r 2252 . . . 4 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑))
54a1i 11 . . 3 (Ⅎ𝑥𝜑 → (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑𝜑)))
62, 3, 5wl-equsaldv 37541 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑) ↔ 𝜑))
71, 6bitrid 283 1 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wnf 1783  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-nf 1784  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator