![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbid2ft | Structured version Visualization version GIF version |
Description: A more general version of sbid2vw 2260. (Contributed by Wolf Lammen, 14-May-2019.) |
Ref | Expression |
---|---|
wl-sbid2ft | ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2085 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) | |
2 | nfnf1 2155 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 | |
3 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
4 | sbequ12r 2253 | . . . 4 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) | |
5 | 4 | a1i 11 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑))) |
6 | 2, 3, 5 | wl-equsaldv 37494 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑) ↔ 𝜑)) |
7 | 1, 6 | bitrid 283 | 1 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 Ⅎwnf 1781 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |