|   | Mathbox for Wolf Lammen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbid2ft | Structured version Visualization version GIF version | ||
| Description: A more general version of sbid2vw 2259. (Contributed by Wolf Lammen, 14-May-2019.) | 
| Ref | Expression | 
|---|---|
| wl-sbid2ft | ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb6 2085 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) | |
| 2 | nfnf1 2154 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 | |
| 3 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
| 4 | sbequ12r 2252 | . . . 4 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑))) | 
| 6 | 2, 3, 5 | wl-equsaldv 37541 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑) ↔ 𝜑)) | 
| 7 | 1, 6 | bitrid 283 | 1 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |