Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-eujustlem1 Structured version   Visualization version   GIF version

Theorem wl-eujustlem1 37653
Description: Version of cbvexvw 2038 with references to ax-6 1968 listed as antecedents. (Contributed by Wolf Lammen, 18-Feb-2026.)
Hypothesis
Ref Expression
wl-eujustlem1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
wl-eujustlem1 ((∀𝑦𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦 𝑥 = 𝑦) → (∃𝑥𝜑 ↔ ∃𝑦𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem wl-eujustlem1
StepHypRef Expression
1 wl-eujustlem1.1 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜓))
21notbid 318 . . . . . . . . 9 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
32biimpcd 249 . . . . . . . 8 𝜑 → (𝑥 = 𝑦 → ¬ 𝜓))
43aleximi 1833 . . . . . . 7 (∀𝑥 ¬ 𝜑 → (∃𝑥 𝑥 = 𝑦 → ∃𝑥 ¬ 𝜓))
5 ax5e 1913 . . . . . . 7 (∃𝑥 ¬ 𝜓 → ¬ 𝜓)
64, 5syl6 35 . . . . . 6 (∀𝑥 ¬ 𝜑 → (∃𝑥 𝑥 = 𝑦 → ¬ 𝜓))
76alimdv 1917 . . . . 5 (∀𝑥 ¬ 𝜑 → (∀𝑦𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ 𝜓))
87com12 32 . . . 4 (∀𝑦𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝜑 → ∀𝑦 ¬ 𝜓))
92biimprcd 250 . . . . . . . 8 𝜓 → (𝑥 = 𝑦 → ¬ 𝜑))
109aleximi 1833 . . . . . . 7 (∀𝑦 ¬ 𝜓 → (∃𝑦 𝑥 = 𝑦 → ∃𝑦 ¬ 𝜑))
11 ax5e 1913 . . . . . . 7 (∃𝑦 ¬ 𝜑 → ¬ 𝜑)
1210, 11syl6 35 . . . . . 6 (∀𝑦 ¬ 𝜓 → (∃𝑦 𝑥 = 𝑦 → ¬ 𝜑))
1312alimdv 1917 . . . . 5 (∀𝑦 ¬ 𝜓 → (∀𝑥𝑦 𝑥 = 𝑦 → ∀𝑥 ¬ 𝜑))
1413com12 32 . . . 4 (∀𝑥𝑦 𝑥 = 𝑦 → (∀𝑦 ¬ 𝜓 → ∀𝑥 ¬ 𝜑))
158, 14anbiim 641 . . 3 ((∀𝑦𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦 𝑥 = 𝑦) → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓))
1615notbid 318 . 2 ((∀𝑦𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦 𝑥 = 𝑦) → (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓))
17 df-ex 1781 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
18 df-ex 1781 . 2 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
1916, 17, 183bitr4g 314 1 ((∀𝑦𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦 𝑥 = 𝑦) → (∃𝑥𝜑 ↔ ∃𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator