Proof of Theorem wl-eujustlem1
| Step | Hyp | Ref
| Expression |
| 1 | | wl-eujustlem1.1 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 2 | 1 | notbid 318 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | biimpcd 249 |
. . . . . . . 8
⊢ (¬
𝜑 → (𝑥 = 𝑦 → ¬ 𝜓)) |
| 4 | 3 | aleximi 1833 |
. . . . . . 7
⊢
(∀𝑥 ¬
𝜑 → (∃𝑥 𝑥 = 𝑦 → ∃𝑥 ¬ 𝜓)) |
| 5 | | ax5e 1913 |
. . . . . . 7
⊢
(∃𝑥 ¬
𝜓 → ¬ 𝜓) |
| 6 | 4, 5 | syl6 35 |
. . . . . 6
⊢
(∀𝑥 ¬
𝜑 → (∃𝑥 𝑥 = 𝑦 → ¬ 𝜓)) |
| 7 | 6 | alimdv 1917 |
. . . . 5
⊢
(∀𝑥 ¬
𝜑 → (∀𝑦∃𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ 𝜓)) |
| 8 | 7 | com12 32 |
. . . 4
⊢
(∀𝑦∃𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝜑 → ∀𝑦 ¬ 𝜓)) |
| 9 | 2 | biimprcd 250 |
. . . . . . . 8
⊢ (¬
𝜓 → (𝑥 = 𝑦 → ¬ 𝜑)) |
| 10 | 9 | aleximi 1833 |
. . . . . . 7
⊢
(∀𝑦 ¬
𝜓 → (∃𝑦 𝑥 = 𝑦 → ∃𝑦 ¬ 𝜑)) |
| 11 | | ax5e 1913 |
. . . . . . 7
⊢
(∃𝑦 ¬
𝜑 → ¬ 𝜑) |
| 12 | 10, 11 | syl6 35 |
. . . . . 6
⊢
(∀𝑦 ¬
𝜓 → (∃𝑦 𝑥 = 𝑦 → ¬ 𝜑)) |
| 13 | 12 | alimdv 1917 |
. . . . 5
⊢
(∀𝑦 ¬
𝜓 → (∀𝑥∃𝑦 𝑥 = 𝑦 → ∀𝑥 ¬ 𝜑)) |
| 14 | 13 | com12 32 |
. . . 4
⊢
(∀𝑥∃𝑦 𝑥 = 𝑦 → (∀𝑦 ¬ 𝜓 → ∀𝑥 ¬ 𝜑)) |
| 15 | 8, 14 | anbiim 641 |
. . 3
⊢
((∀𝑦∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥∃𝑦 𝑥 = 𝑦) → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)) |
| 16 | 15 | notbid 318 |
. 2
⊢
((∀𝑦∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥∃𝑦 𝑥 = 𝑦) → (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓)) |
| 17 | | df-ex 1781 |
. 2
⊢
(∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| 18 | | df-ex 1781 |
. 2
⊢
(∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) |
| 19 | 16, 17, 18 | 3bitr4g 314 |
1
⊢
((∀𝑦∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥∃𝑦 𝑥 = 𝑦) → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) |