Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nfsbtv Structured version   Visualization version   GIF version

Theorem wl-nfsbtv 37077
Description: Closed form of nfsbv 2318. (Contributed by Wolf Lammen, 2-May-2025.)
Assertion
Ref Expression
wl-nfsbtv (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem wl-nfsbtv
StepHypRef Expression
1 stdpc4 2063 . 2 (∀𝑥𝑧𝜑 → [𝑦 / 𝑥]Ⅎ𝑧𝜑)
2 sbnf 2301 . 2 ([𝑦 / 𝑥]Ⅎ𝑧𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑)
31, 2sylib 217 1 (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531  wnf 1777  [wsb 2059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-sb 2060
This theorem is referenced by:  wl-sb8eutv  37079
  Copyright terms: Public domain W3C validator