![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nfsbtv | Structured version Visualization version GIF version |
Description: Closed form of nfsbv 2329. (Contributed by Wolf Lammen, 2-May-2025.) |
Ref | Expression |
---|---|
wl-nfsbtv | ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2066 | . 2 ⊢ (∀𝑥Ⅎ𝑧𝜑 → [𝑦 / 𝑥]Ⅎ𝑧𝜑) | |
2 | sbnf 2311 | . 2 ⊢ ([𝑦 / 𝑥]Ⅎ𝑧𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 Ⅎwnf 1780 [wsb 2062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-10 2139 ax-11 2155 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-sb 2063 |
This theorem is referenced by: wl-sb8eutv 37560 |
Copyright terms: Public domain | W3C validator |