Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8eutv Structured version   Visualization version   GIF version

Theorem wl-sb8eutv 37079
Description: Substitution of variable in universal quantifier. Closed form of sb8euv 2588. (Contributed by Wolf Lammen, 3-May-2025.)
Assertion
Ref Expression
wl-sb8eutv (∀𝑥𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-sb8eutv
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfnf1 2143 . . . . . 6 𝑦𝑦𝜑
21nfal 2311 . . . . 5 𝑦𝑥𝑦𝜑
3 equsb3 2093 . . . . . . 7 ([𝑣 / 𝑥]𝑥 = 𝑢𝑣 = 𝑢)
43sblbis 2298 . . . . . 6 ([𝑣 / 𝑥](𝜑𝑥 = 𝑢) ↔ ([𝑣 / 𝑥]𝜑𝑣 = 𝑢))
5 wl-nfsbtv 37077 . . . . . . 7 (∀𝑥𝑦𝜑 → Ⅎ𝑦[𝑣 / 𝑥]𝜑)
6 nfvd 1910 . . . . . . 7 (∀𝑥𝑦𝜑 → Ⅎ𝑦 𝑣 = 𝑢)
75, 6nfbid 1897 . . . . . 6 (∀𝑥𝑦𝜑 → Ⅎ𝑦([𝑣 / 𝑥]𝜑𝑣 = 𝑢))
84, 7nfxfrd 1848 . . . . 5 (∀𝑥𝑦𝜑 → Ⅎ𝑦[𝑣 / 𝑥](𝜑𝑥 = 𝑢))
9 sbequ 2078 . . . . . 6 (𝑣 = 𝑦 → ([𝑣 / 𝑥](𝜑𝑥 = 𝑢) ↔ [𝑦 / 𝑥](𝜑𝑥 = 𝑢)))
109a1i 11 . . . . 5 (∀𝑥𝑦𝜑 → (𝑣 = 𝑦 → ([𝑣 / 𝑥](𝜑𝑥 = 𝑢) ↔ [𝑦 / 𝑥](𝜑𝑥 = 𝑢))))
112, 8, 10cbvaldw 2329 . . . 4 (∀𝑥𝑦𝜑 → (∀𝑣[𝑣 / 𝑥](𝜑𝑥 = 𝑢) ↔ ∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑢)))
12 sb8v 2343 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑢) ↔ ∀𝑣[𝑣 / 𝑥](𝜑𝑥 = 𝑢))
1312bicomi 223 . . . 4 (∀𝑣[𝑣 / 𝑥](𝜑𝑥 = 𝑢) ↔ ∀𝑥(𝜑𝑥 = 𝑢))
14 equsb3 2093 . . . . . 6 ([𝑦 / 𝑥]𝑥 = 𝑢𝑦 = 𝑢)
1514sblbis 2298 . . . . 5 ([𝑦 / 𝑥](𝜑𝑥 = 𝑢) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑢))
1615albii 1813 . . . 4 (∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑢) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑢))
1711, 13, 163bitr3g 312 . . 3 (∀𝑥𝑦𝜑 → (∀𝑥(𝜑𝑥 = 𝑢) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑢)))
1817exbidv 1916 . 2 (∀𝑥𝑦𝜑 → (∃𝑢𝑥(𝜑𝑥 = 𝑢) ↔ ∃𝑢𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑢)))
19 eu6 2563 . 2 (∃!𝑥𝜑 ↔ ∃𝑢𝑥(𝜑𝑥 = 𝑢))
20 eu6 2563 . 2 (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑢𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑢))
2118, 19, 203bitr4g 313 1 (∀𝑥𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wex 1773  wnf 1777  [wsb 2059  ∃!weu 2557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558
This theorem is referenced by:  wl-sb8motv  37081
  Copyright terms: Public domain W3C validator