Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8eut Structured version   Visualization version   GIF version

Theorem wl-sb8eut 35732
Description: Substitution of variable in universal quantifier. Closed form of sb8eu 2600. (Contributed by Wolf Lammen, 11-Aug-2019.)
Assertion
Ref Expression
wl-sb8eut (∀𝑥𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑))

Proof of Theorem wl-sb8eut
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfnf1 2151 . . . . . 6 𝑦𝑦𝜑
21nfal 2317 . . . . 5 𝑦𝑥𝑦𝜑
3 equsb3 2101 . . . . . . 7 ([𝑣 / 𝑥]𝑥 = 𝑢𝑣 = 𝑢)
43sblbis 2306 . . . . . 6 ([𝑣 / 𝑥](𝜑𝑥 = 𝑢) ↔ ([𝑣 / 𝑥]𝜑𝑣 = 𝑢))
5 nfa1 2148 . . . . . . . 8 𝑥𝑥𝑦𝜑
6 sp 2176 . . . . . . . 8 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝜑)
75, 6nfsbd 2526 . . . . . . 7 (∀𝑥𝑦𝜑 → Ⅎ𝑦[𝑣 / 𝑥]𝜑)
8 nfvd 1918 . . . . . . 7 (∀𝑥𝑦𝜑 → Ⅎ𝑦 𝑣 = 𝑢)
97, 8nfbid 1905 . . . . . 6 (∀𝑥𝑦𝜑 → Ⅎ𝑦([𝑣 / 𝑥]𝜑𝑣 = 𝑢))
104, 9nfxfrd 1856 . . . . 5 (∀𝑥𝑦𝜑 → Ⅎ𝑦[𝑣 / 𝑥](𝜑𝑥 = 𝑢))
11 sbequ 2086 . . . . . 6 (𝑣 = 𝑦 → ([𝑣 / 𝑥](𝜑𝑥 = 𝑢) ↔ [𝑦 / 𝑥](𝜑𝑥 = 𝑢)))
1211a1i 11 . . . . 5 (∀𝑥𝑦𝜑 → (𝑣 = 𝑦 → ([𝑣 / 𝑥](𝜑𝑥 = 𝑢) ↔ [𝑦 / 𝑥](𝜑𝑥 = 𝑢))))
132, 10, 12cbvald 2407 . . . 4 (∀𝑥𝑦𝜑 → (∀𝑣[𝑣 / 𝑥](𝜑𝑥 = 𝑢) ↔ ∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑢)))
14 nfv 1917 . . . . . 6 𝑣(𝜑𝑥 = 𝑢)
1514sb8 2521 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑢) ↔ ∀𝑣[𝑣 / 𝑥](𝜑𝑥 = 𝑢))
1615bicomi 223 . . . 4 (∀𝑣[𝑣 / 𝑥](𝜑𝑥 = 𝑢) ↔ ∀𝑥(𝜑𝑥 = 𝑢))
17 equsb3 2101 . . . . . 6 ([𝑦 / 𝑥]𝑥 = 𝑢𝑦 = 𝑢)
1817sblbis 2306 . . . . 5 ([𝑦 / 𝑥](𝜑𝑥 = 𝑢) ↔ ([𝑦 / 𝑥]𝜑𝑦 = 𝑢))
1918albii 1822 . . . 4 (∀𝑦[𝑦 / 𝑥](𝜑𝑥 = 𝑢) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑢))
2013, 16, 193bitr3g 313 . . 3 (∀𝑥𝑦𝜑 → (∀𝑥(𝜑𝑥 = 𝑢) ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑢)))
2120exbidv 1924 . 2 (∀𝑥𝑦𝜑 → (∃𝑢𝑥(𝜑𝑥 = 𝑢) ↔ ∃𝑢𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑢)))
22 eu6 2574 . 2 (∃!𝑥𝜑 ↔ ∃𝑢𝑥(𝜑𝑥 = 𝑢))
23 eu6 2574 . 2 (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃𝑢𝑦([𝑦 / 𝑥]𝜑𝑦 = 𝑢))
2421, 22, 233bitr4g 314 1 (∀𝑥𝑦𝜑 → (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782  wnf 1786  [wsb 2067  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569
This theorem is referenced by:  wl-sb8mot  35733
  Copyright terms: Public domain W3C validator