| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sblimt | Structured version Visualization version GIF version | ||
| Description: Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2304. (Contributed by Wolf Lammen, 26-Jul-2019.) |
| Ref | Expression |
|---|---|
| wl-sblimt | ⊢ (Ⅎ𝑥𝜓 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbim 2303 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | sbft 2270 | . . 3 ⊢ (Ⅎ𝑥𝜓 → ([𝑦 / 𝑥]𝜓 ↔ 𝜓)) | |
| 3 | 2 | imbi2d 340 | . 2 ⊢ (Ⅎ𝑥𝜓 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓))) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (Ⅎ𝑥𝜓 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |