Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sblimt | Structured version Visualization version GIF version |
Description: Substitution with a variable not free in antecedent affects only the consequent. Closed form of sbrim 2301. (Contributed by Wolf Lammen, 26-Jul-2019.) |
Ref | Expression |
---|---|
wl-sblimt | ⊢ (Ⅎ𝑥𝜓 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbim 2300 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sbft 2262 | . . 3 ⊢ (Ⅎ𝑥𝜓 → ([𝑦 / 𝑥]𝜓 ↔ 𝜓)) | |
3 | 2 | imbi2d 341 | . 2 ⊢ (Ⅎ𝑥𝜓 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓))) |
4 | 1, 3 | bitrid 282 | 1 ⊢ (Ⅎ𝑥𝜓 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |