Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8t Structured version   Visualization version   GIF version

Theorem wl-sb8t 35707
Description: Substitution of variable in universal quantifier. Closed form of sb8 2521. (Contributed by Wolf Lammen, 27-Jul-2019.)
Assertion
Ref Expression
wl-sb8t (∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))

Proof of Theorem wl-sb8t
StepHypRef Expression
1 nfa1 2148 . 2 𝑥𝑥𝑦𝜑
2 nfnf1 2151 . . 3 𝑦𝑦𝜑
32nfal 2317 . 2 𝑦𝑥𝑦𝜑
4 sp 2176 . 2 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝜑)
5 wl-nfs1t 35696 . . 3 (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
65sps 2178 . 2 (∀𝑥𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
7 sbequ12 2244 . . 3 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
87a1i 11 . 2 (∀𝑥𝑦𝜑 → (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)))
91, 3, 4, 6, 8cbv2 2403 1 (∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  wl-sb8et  35708  wl-sbhbt  35709
  Copyright terms: Public domain W3C validator