Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nanorxor Structured version   Visualization version   GIF version

Theorem nanorxor 39470
Description: 'nand' is equivalent to the equivalence of inclusive and exclusive or. (Contributed by Steve Rodriguez, 28-Feb-2020.)
Assertion
Ref Expression
nanorxor ((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))

Proof of Theorem nanorxor
StepHypRef Expression
1 df-nan 1558 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 xor2 1588 . . . 4 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
32rbaibr 533 . . 3 (¬ (𝜑𝜓) → ((𝜑𝜓) ↔ (𝜑𝜓)))
42bibi2i 329 . . . 4 (((𝜑𝜓) ↔ (𝜑𝜓)) ↔ ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))))
5 pm4.71 553 . . . . 5 (((𝜑𝜓) → ¬ (𝜑𝜓)) ↔ ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))))
6 simpl 476 . . . . . . . 8 ((𝜑𝜓) → 𝜑)
76orcd 862 . . . . . . 7 ((𝜑𝜓) → (𝜑𝜓))
87con3i 152 . . . . . 6 (¬ (𝜑𝜓) → ¬ (𝜑𝜓))
9 id 22 . . . . . 6 (¬ (𝜑𝜓) → ¬ (𝜑𝜓))
108, 9ja 175 . . . . 5 (((𝜑𝜓) → ¬ (𝜑𝜓)) → ¬ (𝜑𝜓))
115, 10sylbir 227 . . . 4 (((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))) → ¬ (𝜑𝜓))
124, 11sylbi 209 . . 3 (((𝜑𝜓) ↔ (𝜑𝜓)) → ¬ (𝜑𝜓))
133, 12impbii 201 . 2 (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
141, 13bitri 267 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  wnan 1557  wxo 1582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-nan 1558  df-xor 1583
This theorem is referenced by:  undisjrab  39471
  Copyright terms: Public domain W3C validator