Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nanorxor Structured version   Visualization version   GIF version

Theorem nanorxor 41923
Description: 'nand' is equivalent to the equivalence of inclusive and exclusive or. (Contributed by Steve Rodriguez, 28-Feb-2020.)
Assertion
Ref Expression
nanorxor ((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))

Proof of Theorem nanorxor
StepHypRef Expression
1 df-nan 1487 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 xor2 1513 . . . 4 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
32rbaibr 538 . . 3 (¬ (𝜑𝜓) → ((𝜑𝜓) ↔ (𝜑𝜓)))
42bibi2i 338 . . . 4 (((𝜑𝜓) ↔ (𝜑𝜓)) ↔ ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))))
5 pm4.71 558 . . . . 5 (((𝜑𝜓) → ¬ (𝜑𝜓)) ↔ ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))))
6 simpl 483 . . . . . . . 8 ((𝜑𝜓) → 𝜑)
76orcd 870 . . . . . . 7 ((𝜑𝜓) → (𝜑𝜓))
87con3i 154 . . . . . 6 (¬ (𝜑𝜓) → ¬ (𝜑𝜓))
9 id 22 . . . . . 6 (¬ (𝜑𝜓) → ¬ (𝜑𝜓))
108, 9ja 186 . . . . 5 (((𝜑𝜓) → ¬ (𝜑𝜓)) → ¬ (𝜑𝜓))
115, 10sylbir 234 . . . 4 (((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))) → ¬ (𝜑𝜓))
124, 11sylbi 216 . . 3 (((𝜑𝜓) ↔ (𝜑𝜓)) → ¬ (𝜑𝜓))
133, 12impbii 208 . 2 (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
141, 13bitri 274 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  wnan 1486  wxo 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-nan 1487  df-xor 1507
This theorem is referenced by:  undisjrab  41924
  Copyright terms: Public domain W3C validator