New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ce0nn | Unicode version |
Description: A natural raised to cardinal zero is nonempty. Theorem XI.2.44 of [Rosser] p. 383. (Contributed by SF, 9-Mar-2015.) |
Ref | Expression |
---|---|
ce0nn | Nn ↑c 0c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . . . 6 | |
2 | 1 | elcompl 3226 | . . . . 5 ∼ 0c FullFun ↑c 0c FullFun ↑c |
3 | brres 4950 | . . . . . . . . . 10 0c 0c | |
4 | eliniseg 5021 | . . . . . . . . . . 11 0c 0c | |
5 | 4 | anbi2i 675 | . . . . . . . . . 10 0c 0c |
6 | 0cex 4393 | . . . . . . . . . . 11 0c | |
7 | 1, 6 | op1st2nd 5791 | . . . . . . . . . 10 0c 0c |
8 | 3, 5, 7 | 3bitri 262 | . . . . . . . . 9 0c 0c |
9 | 8 | rexbii 2640 | . . . . . . . 8 FullFun ↑c 0c FullFun ↑c 0c |
10 | elima 4755 | . . . . . . . 8 0c FullFun ↑c FullFun ↑c 0c | |
11 | risset 2662 | . . . . . . . 8 0c FullFun ↑c FullFun ↑c 0c | |
12 | 9, 10, 11 | 3bitr4i 268 | . . . . . . 7 0c FullFun ↑c 0c FullFun ↑c |
13 | eliniseg 5021 | . . . . . . 7 0c FullFun ↑c 0c FullFun ↑c | |
14 | 1, 6 | brfullfunop 5868 | . . . . . . 7 0c FullFun ↑c ↑c 0c |
15 | 12, 13, 14 | 3bitri 262 | . . . . . 6 0c FullFun ↑c ↑c 0c |
16 | 15 | necon3bbii 2548 | . . . . 5 0c FullFun ↑c ↑c 0c |
17 | 2, 16 | bitri 240 | . . . 4 ∼ 0c FullFun ↑c ↑c 0c |
18 | 17 | abbi2i 2465 | . . 3 ∼ 0c FullFun ↑c ↑c 0c |
19 | 1stex 4740 | . . . . . 6 | |
20 | 2ndex 5113 | . . . . . . . 8 | |
21 | 20 | cnvex 5103 | . . . . . . 7 |
22 | snex 4112 | . . . . . . 7 0c | |
23 | 21, 22 | imaex 4748 | . . . . . 6 0c |
24 | 19, 23 | resex 5118 | . . . . 5 0c |
25 | ceex 6175 | . . . . . . . 8 ↑c | |
26 | 25 | fullfunex 5861 | . . . . . . 7 FullFun ↑c |
27 | 26 | cnvex 5103 | . . . . . 6 FullFun ↑c |
28 | snex 4112 | . . . . . 6 | |
29 | 27, 28 | imaex 4748 | . . . . 5 FullFun ↑c |
30 | 24, 29 | imaex 4748 | . . . 4 0c FullFun ↑c |
31 | 30 | complex 4105 | . . 3 ∼ 0c FullFun ↑c |
32 | 18, 31 | eqeltrri 2424 | . 2 ↑c 0c |
33 | oveq1 5531 | . . 3 0c ↑c 0c 0c ↑c 0c | |
34 | 33 | neeq1d 2530 | . 2 0c ↑c 0c 0c ↑c 0c |
35 | oveq1 5531 | . . 3 ↑c 0c ↑c 0c | |
36 | 35 | neeq1d 2530 | . 2 ↑c 0c ↑c 0c |
37 | oveq1 5531 | . . 3 1c ↑c 0c 1c ↑c 0c | |
38 | 37 | neeq1d 2530 | . 2 1c ↑c 0c 1c ↑c 0c |
39 | oveq1 5531 | . . 3 ↑c 0c ↑c 0c | |
40 | 39 | neeq1d 2530 | . 2 ↑c 0c ↑c 0c |
41 | 0cnc 6139 | . . 3 0c NC | |
42 | pw10 4162 | . . . 4 1 | |
43 | nulel0c 4423 | . . . 4 0c | |
44 | 42, 43 | eqeltri 2423 | . . 3 1 0c |
45 | ce0nnuli 6179 | . . 3 0c NC 1 0c 0c ↑c 0c | |
46 | 41, 44, 45 | mp2an 653 | . 2 0c ↑c 0c |
47 | nnnc 6147 | . . 3 Nn NC | |
48 | 1cnc 6140 | . . . . . 6 1c NC | |
49 | 0ex 4111 | . . . . . . . 8 | |
50 | 49 | pw1sn 4166 | . . . . . . 7 1 |
51 | 28 | snel1c 4141 | . . . . . . 7 1c |
52 | 50, 51 | eqeltri 2423 | . . . . . 6 1 1c |
53 | ce0nnuli 6179 | . . . . . 6 1c NC 1 1c 1c ↑c 0c | |
54 | 48, 52, 53 | mp2an 653 | . . . . 5 1c ↑c 0c |
55 | 54 | jctr 526 | . . . 4 ↑c 0c ↑c 0c 1c ↑c 0c |
56 | ce0addcnnul 6180 | . . . . 5 NC 1c NC 1c ↑c 0c ↑c 0c 1c ↑c 0c | |
57 | 48, 56 | mpan2 652 | . . . 4 NC 1c ↑c 0c ↑c 0c 1c ↑c 0c |
58 | 55, 57 | syl5ibr 212 | . . 3 NC ↑c 0c 1c ↑c 0c |
59 | 47, 58 | syl 15 | . 2 Nn ↑c 0c 1c ↑c 0c |
60 | 32, 34, 36, 38, 40, 46, 59 | finds 4412 | 1 Nn ↑c 0c |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wceq 1642 wcel 1710 cab 2339 wne 2517 wrex 2616 cvv 2860 ∼ ccompl 3206 c0 3551 csn 3738 1cc1c 4135 1 cpw1 4136 Nn cnnc 4374 0cc0c 4375 cplc 4376 cop 4562 class class class wbr 4640 c1st 4718 cima 4723 ccnv 4772 cres 4775 c2nd 4784 (class class class)co 5526 FullFun cfullfun 5768 NC cncs 6089 ↑c cce 6097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-fullfun 5769 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-nc 6102 df-ce 6107 |
This theorem is referenced by: ceclnn1 6190 nchoicelem5 6294 |
Copyright terms: Public domain | W3C validator |