| Step | Hyp | Ref
 | Expression | 
| 1 |   | vex 2863 | 
. . . . . 6
        | 
| 2 | 1 | elcompl 3226 | 
. . . . 5
       ∼            0c       FullFun
↑c                           0c       FullFun ↑c         | 
| 3 |   | brres 4950 | 
. . . . . . . . . 10
              0c    
 
    
           0c     | 
| 4 |   | eliniseg 5021 | 
. . . . . . . . . . 11
            0c       0c  | 
| 5 | 4 | anbi2i 675 | 
. . . . . . . . . 10
             
     0c          
    0c   | 
| 6 |   | 0cex 4393 | 
. . . . . . . . . . 11
 
0c  
  | 
| 7 | 1, 6 | op1st2nd 5791 | 
. . . . . . . . . 10
            0c           
0c   | 
| 8 | 3, 5, 7 | 3bitri 262 | 
. . . . . . . . 9
              0c    
 
       
0c   | 
| 9 | 8 | rexbii 2640 | 
. . . . . . . 8
       
   FullFun
↑c                 0c    
 
        FullFun ↑c             
0c   | 
| 10 |   | elima 4755 | 
. . . . . . . 8
                  0c       FullFun
↑c                  FullFun ↑c                 0c      | 
| 11 |   | risset 2662 | 
. . . . . . . 8
      
0c       FullFun
↑c           
     FullFun
↑c         
    0c   | 
| 12 | 9, 10, 11 | 3bitr4i 268 | 
. . . . . . 7
                  0c       FullFun
↑c             
0c       FullFun
↑c        | 
| 13 |   | eliniseg 5021 | 
. . . . . . 7
      
0c       FullFun
↑c            
0c  FullFun ↑c    | 
| 14 | 1, 6 | brfullfunop 5868 | 
. . . . . . 7
      
0c  FullFun ↑c        ↑c
0c 
     | 
| 15 | 12, 13, 14 | 3bitri 262 | 
. . . . . 6
                  0c       FullFun
↑c            
↑c 0c       | 
| 16 | 15 | necon3bbii 2548 | 
. . . . 5
                    0c       FullFun ↑c             ↑c
0c 
     | 
| 17 | 2, 16 | bitri 240 | 
. . . 4
       ∼            0c       FullFun
↑c            
↑c 0c       | 
| 18 | 17 | eqabi 2465 | 
. . 3
  ∼            0c       FullFun ↑c              
   ↑c
0c 
     | 
| 19 |   | 1stex 4740 | 
. . . . . 6
        | 
| 20 |   | 2ndex 5113 | 
. . . . . . . 8
        | 
| 21 | 20 | cnvex 5103 | 
. . . . . . 7
         | 
| 22 |   | snex 4112 | 
. . . . . . 7
   0c      | 
| 23 | 21, 22 | imaex 4748 | 
. . . . . 6
       0c       | 
| 24 | 19, 23 | resex 5118 | 
. . . . 5
            0c   
    | 
| 25 |   | ceex 6175 | 
. . . . . . . 8
 
↑c     | 
| 26 | 25 | fullfunex 5861 | 
. . . . . . 7
  FullFun ↑c     | 
| 27 | 26 | cnvex 5103 | 
. . . . . 6
    FullFun ↑c     | 
| 28 |   | snex 4112 | 
. . . . . 6
          | 
| 29 | 27, 28 | imaex 4748 | 
. . . . 5
     FullFun
↑c           | 
| 30 | 24, 29 | imaex 4748 | 
. . . 4
             0c       FullFun ↑c            | 
| 31 | 30 | complex 4105 | 
. . 3
  ∼            0c       FullFun ↑c            | 
| 32 | 18, 31 | eqeltrri 2424 | 
. 2
         
↑c 0c           | 
| 33 |   | oveq1 5531 | 
. . 3
       0c     
↑c 0c     0c ↑c
0c   | 
| 34 | 33 | neeq1d 2530 | 
. 2
       0c       ↑c
0c 
       0c
↑c 0c        | 
| 35 |   | oveq1 5531 | 
. . 3
              ↑c 0c      
↑c 0c   | 
| 36 | 35 | neeq1d 2530 | 
. 2
              
↑c 0c     
 
   ↑c
0c 
      | 
| 37 |   | oveq1 5531 | 
. . 3
            1c      
↑c 0c          1c  ↑c 0c   | 
| 38 | 37 | neeq1d 2530 | 
. 2
            1c        ↑c
0c 
           
1c 
↑c 0c        | 
| 39 |   | oveq1 5531 | 
. . 3
              ↑c 0c      
↑c 0c   | 
| 40 | 39 | neeq1d 2530 | 
. 2
              
↑c 0c     
 
   ↑c
0c 
      | 
| 41 |   | 0cnc 6139 | 
. . 3
 
0c  
NC | 
| 42 |   | pw10 4162 | 
. . . 4
   1       | 
| 43 |   | nulel0c 4423 | 
. . . 4
     
0c | 
| 44 | 42, 43 | eqeltri 2423 | 
. . 3
   1    
0c | 
| 45 |   | ce0nnuli 6179 | 
. . 3
    0c   NC    1     0c     0c ↑c
0c 
     | 
| 46 | 41, 44, 45 | mp2an 653 | 
. 2
   0c
↑c 0c      | 
| 47 |   | nnnc 6147 | 
. . 3
       Nn       NC   | 
| 48 |   | 1cnc 6140 | 
. . . . . 6
 
1c  
NC | 
| 49 |   | 0ex 4111 | 
. . . . . . . 8
        | 
| 50 | 49 | pw1sn 4166 | 
. . . . . . 7
   1             | 
| 51 | 28 | snel1c 4141 | 
. . . . . . 7
         
1c | 
| 52 | 50, 51 | eqeltri 2423 | 
. . . . . 6
   1       1c | 
| 53 |   | ce0nnuli 6179 | 
. . . . . 6
    1c   NC    1      
1c 
   1c
↑c 0c       | 
| 54 | 48, 52, 53 | mp2an 653 | 
. . . . 5
   1c
↑c 0c      | 
| 55 | 54 | jctr 526 | 
. . . 4
      ↑c 0c            ↑c 0c         1c
↑c 0c        | 
| 56 |   | ce0addcnnul 6180 | 
. . . . 5
        NC   1c   NC           
1c 
↑c 0c     
 
    ↑c 0c         1c ↑c
0c 
       | 
| 57 | 48, 56 | mpan2 652 | 
. . . 4
       NC          1c  ↑c 0c            ↑c
0c 
       1c
↑c 0c         | 
| 58 | 55, 57 | syl5ibr 212 | 
. . 3
       NC       ↑c
0c 
         
 
1c 
↑c 0c        | 
| 59 | 47, 58 | syl 15 | 
. 2
       Nn       ↑c
0c 
         
 
1c 
↑c 0c        | 
| 60 | 32, 34, 36, 38, 40, 46, 59 | finds 4412 | 
1
       Nn     
↑c 0c       |