| Step | Hyp | Ref
| Expression |
| 1 | | vex 2863 |
. . . . . 6
 |
| 2 | 1 | elcompl 3226 |
. . . . 5
 ∼       0c     FullFun
↑c            0c     FullFun ↑c        |
| 3 | | brres 4950 |
. . . . . . . . . 10
       0c  
  
    0c    |
| 4 | | eliniseg 5021 |
. . . . . . . . . . 11
     0c  0c |
| 5 | 4 | anbi2i 675 |
. . . . . . . . . 10
   
    0c    
 0c  |
| 6 | | 0cex 4393 |
. . . . . . . . . . 11
0c
 |
| 7 | 1, 6 | op1st2nd 5791 |
. . . . . . . . . 10
     0c  
0c  |
| 8 | 3, 5, 7 | 3bitri 262 |
. . . . . . . . 9
       0c  
 
0c  |
| 9 | 8 | rexbii 2640 |
. . . . . . . 8
 
 FullFun
↑c            0c  
  FullFun ↑c       
0c  |
| 10 | | elima 4755 |
. . . . . . . 8
       0c     FullFun
↑c        FullFun ↑c            0c     |
| 11 | | risset 2662 |
. . . . . . . 8
  
0c  FullFun
↑c     
 FullFun
↑c     
  0c  |
| 12 | 9, 10, 11 | 3bitr4i 268 |
. . . . . . 7
       0c     FullFun
↑c       
0c  FullFun
↑c       |
| 13 | | eliniseg 5021 |
. . . . . . 7
  
0c  FullFun
↑c      
0c FullFun ↑c   |
| 14 | 1, 6 | brfullfunop 5868 |
. . . . . . 7
  
0c FullFun ↑c  ↑c
0c
  |
| 15 | 12, 13, 14 | 3bitri 262 |
. . . . . 6
       0c     FullFun
↑c      
↑c 0c   |
| 16 | 15 | necon3bbii 2548 |
. . . . 5
       0c     FullFun ↑c       ↑c
0c
  |
| 17 | 2, 16 | bitri 240 |
. . . 4
 ∼       0c     FullFun
↑c      
↑c 0c   |
| 18 | 17 | eqabi 2465 |
. . 3
∼       0c     FullFun ↑c      
 ↑c
0c
  |
| 19 | | 1stex 4740 |
. . . . . 6
 |
| 20 | | 2ndex 5113 |
. . . . . . . 8
 |
| 21 | 20 | cnvex 5103 |
. . . . . . 7
  |
| 22 | | snex 4112 |
. . . . . . 7
0c  |
| 23 | 21, 22 | imaex 4748 |
. . . . . 6
    0c  |
| 24 | 19, 23 | resex 5118 |
. . . . 5
     0c 
 |
| 25 | | ceex 6175 |
. . . . . . . 8
↑c  |
| 26 | 25 | fullfunex 5861 |
. . . . . . 7
FullFun ↑c  |
| 27 | 26 | cnvex 5103 |
. . . . . 6
FullFun ↑c  |
| 28 | | snex 4112 |
. . . . . 6
   |
| 29 | 27, 28 | imaex 4748 |
. . . . 5
 FullFun
↑c      |
| 30 | 24, 29 | imaex 4748 |
. . . 4
      0c     FullFun ↑c       |
| 31 | 30 | complex 4105 |
. . 3
∼       0c     FullFun ↑c       |
| 32 | 18, 31 | eqeltrri 2424 |
. 2
 
↑c 0c   |
| 33 | | oveq1 5531 |
. . 3
 0c 
↑c 0c 0c ↑c
0c  |
| 34 | 33 | neeq1d 2530 |
. 2
 0c   ↑c
0c
0c
↑c 0c    |
| 35 | | oveq1 5531 |
. . 3
  ↑c 0c 
↑c 0c  |
| 36 | 35 | neeq1d 2530 |
. 2
  
↑c 0c
 ↑c
0c
   |
| 37 | | oveq1 5531 |
. . 3
  1c 
↑c 0c   1c ↑c 0c  |
| 38 | 37 | neeq1d 2530 |
. 2
  1c   ↑c
0c
 
1c
↑c 0c    |
| 39 | | oveq1 5531 |
. . 3
  ↑c 0c 
↑c 0c  |
| 40 | 39 | neeq1d 2530 |
. 2
  
↑c 0c
 ↑c
0c
   |
| 41 | | 0cnc 6139 |
. . 3
0c
NC |
| 42 | | pw10 4162 |
. . . 4
1  |
| 43 | | nulel0c 4423 |
. . . 4
0c |
| 44 | 42, 43 | eqeltri 2423 |
. . 3
1
0c |
| 45 | | ce0nnuli 6179 |
. . 3
 0c NC 1 0c 0c ↑c
0c
  |
| 46 | 41, 44, 45 | mp2an 653 |
. 2
0c
↑c 0c  |
| 47 | | nnnc 6147 |
. . 3
 Nn NC  |
| 48 | | 1cnc 6140 |
. . . . . 6
1c
NC |
| 49 | | 0ex 4111 |
. . . . . . . 8
 |
| 50 | 49 | pw1sn 4166 |
. . . . . . 7
1        |
| 51 | 28 | snel1c 4141 |
. . . . . . 7
   
1c |
| 52 | 50, 51 | eqeltri 2423 |
. . . . . 6
1   1c |
| 53 | | ce0nnuli 6179 |
. . . . . 6
 1c NC 1  
1c
1c
↑c 0c   |
| 54 | 48, 52, 53 | mp2an 653 |
. . . . 5
1c
↑c 0c  |
| 55 | 54 | jctr 526 |
. . . 4
  ↑c 0c   ↑c 0c 1c
↑c 0c    |
| 56 | | ce0addcnnul 6180 |
. . . . 5
  NC 1c NC   
1c
↑c 0c
  ↑c 0c 1c ↑c
0c
    |
| 57 | 48, 56 | mpan2 652 |
. . . 4
 NC    1c ↑c 0c   ↑c
0c
1c
↑c 0c     |
| 58 | 55, 57 | syl5ibr 212 |
. . 3
 NC   ↑c
0c
 
1c
↑c 0c    |
| 59 | 47, 58 | syl 15 |
. 2
 Nn   ↑c
0c
 
1c
↑c 0c    |
| 60 | 32, 34, 36, 38, 40, 46, 59 | finds 4412 |
1
 Nn 
↑c 0c   |