NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enmap1lem1 Unicode version

Theorem enmap1lem1 6070
Description: Lemma for enmap1 6075. Set up stratification. (Contributed by SF, 3-Mar-2015.)
Hypothesis
Ref Expression
enmap1lem1.1
Assertion
Ref Expression
enmap1lem1
Distinct variable groups:   ,,   ,
Allowed substitution hints:   ()   (,)

Proof of Theorem enmap1lem1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 5653 . . 3
2 enmap1lem1.1 . . 3
3 opelres 4951 . . . . 5 Compose Compose
4 elima 4755 . . . . . . . . 9 Compose Compose
5 trtxp 5782 . . . . . . . . . . . 12
6 brco 4884 . . . . . . . . . . . . . 14
7 ancom 437 . . . . . . . . . . . . . . . 16
8 brin 4694 . . . . . . . . . . . . . . . . . 18
9 vex 2863 . . . . . . . . . . . . . . . . . . . . 21
10 brxp 4813 . . . . . . . . . . . . . . . . . . . . 21
119, 10mpbiran2 885 . . . . . . . . . . . . . . . . . . . 20
12 eliniseg 5021 . . . . . . . . . . . . . . . . . . . 20
1311, 12bitri 240 . . . . . . . . . . . . . . . . . . 19
1413anbi1i 676 . . . . . . . . . . . . . . . . . 18
15 vex 2863 . . . . . . . . . . . . . . . . . . 19
1615, 9op1st2nd 5791 . . . . . . . . . . . . . . . . . 18
178, 14, 163bitri 262 . . . . . . . . . . . . . . . . 17
1817anbi1i 676 . . . . . . . . . . . . . . . 16
197, 18bitri 240 . . . . . . . . . . . . . . 15
2019exbii 1582 . . . . . . . . . . . . . 14
2115, 9opex 4589 . . . . . . . . . . . . . . 15
22 breq2 4644 . . . . . . . . . . . . . . 15
2321, 22ceqsexv 2895 . . . . . . . . . . . . . 14
246, 20, 233bitri 262 . . . . . . . . . . . . 13
2524anbi1i 676 . . . . . . . . . . . 12
26 vex 2863 . . . . . . . . . . . . 13
2721, 26op1st2nd 5791 . . . . . . . . . . . 12
285, 25, 273bitri 262 . . . . . . . . . . 11
2928rexbii 2640 . . . . . . . . . 10 Compose Compose
30 risset 2662 . . . . . . . . . 10 Compose Compose
3129, 30bitr4i 243 . . . . . . . . 9 Compose Compose
324, 31bitri 240 . . . . . . . 8 Compose Compose
33 df-br 4641 . . . . . . . 8 Compose Compose
3432, 33bitr4i 243 . . . . . . 7 Compose Compose
35 brcomposeg 5820 . . . . . . . 8 Compose
3615, 9, 35mp2an 653 . . . . . . 7 Compose
37 eqcom 2355 . . . . . . 7
3834, 36, 373bitri 262 . . . . . 6 Compose
3938anbi2ci 677 . . . . 5 Compose
403, 39bitri 240 . . . 4 Compose
4140opabbi2i 4867 . . 3 Compose
421, 2, 413eqtr4i 2383 . 2 Compose
43 1stex 4740 . . . . . . . . . 10
4443cnvex 5103 . . . . . . . . 9
45 snex 4112 . . . . . . . . 9
4644, 45imaex 4748 . . . . . . . 8
47 vvex 4110 . . . . . . . 8
4846, 47xpex 5116 . . . . . . 7
49 2ndex 5113 . . . . . . 7
5048, 49inex 4106 . . . . . 6
5150, 43coex 4751 . . . . 5
5251, 49txpex 5786 . . . 4
53 composeex 5821 . . . 4 Compose
5452, 53imaex 4748 . . 3 Compose
55 ovex 5552 . . 3
5654, 55resex 5118 . 2 Compose
5742, 56eqeltri 2423 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358  wex 1541   wceq 1642   wcel 1710  wrex 2616  cvv 2860   cin 3209  csn 3738  cop 4562  copab 4623   class class class wbr 4640  c1st 4718   ccom 4722  cima 4723   cxp 4771  ccnv 4772   cres 4775  c2nd 4784  (class class class)co 5526   cmpt 5652   ctxp 5736   Compose ccompose 5748   cmap 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-compose 5749  df-ins2 5751  df-ins3 5753  df-ins4 5757  df-si3 5759
This theorem is referenced by:  enmap1  6075
  Copyright terms: Public domain W3C validator