Step | Hyp | Ref
| Expression |
1 | | pw1fnf1o 5855 |
. . . . 5
⊢ Pw1Fn :1c–1-1-onto→℘1c |
2 | | f1of1 5286 |
. . . . 5
⊢ ( Pw1Fn :1c–1-1-onto→℘1c → Pw1Fn :1c–1-1→℘1c) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ Pw1Fn :1c–1-1→℘1c |
4 | | pw1ss1c 4158 |
. . . 4
⊢ ℘1℘A ⊆ 1c |
5 | | f1ores 5300 |
. . . 4
⊢ (( Pw1Fn :1c–1-1→℘1c ∧ ℘1℘A ⊆ 1c) → ( Pw1Fn ↾ ℘1℘A):℘1℘A–1-1-onto→(
Pw1Fn “ ℘1℘A)) |
6 | 3, 4, 5 | mp2an 653 |
. . 3
⊢ ( Pw1Fn ↾ ℘1℘A):℘1℘A–1-1-onto→(
Pw1Fn “ ℘1℘A) |
7 | | df-ima 4727 |
. . . . 5
⊢ ( Pw1Fn “ ℘1℘A) =
{x ∣
∃y ∈ ℘1
℘Ay Pw1Fn x} |
8 | | vex 2862 |
. . . . . . . . 9
⊢ x ∈
V |
9 | 8 | elpw 3728 |
. . . . . . . 8
⊢ (x ∈ ℘℘1A ↔ x ⊆ ℘1A) |
10 | 8 | sspw1 4335 |
. . . . . . . 8
⊢ (x ⊆ ℘1A ↔ ∃z(z ⊆ A ∧ x = ℘1z)) |
11 | | df-rex 2620 |
. . . . . . . . 9
⊢ (∃z ∈ ℘ Ax = ℘1z ↔ ∃z(z ∈ ℘A ∧ x = ℘1z)) |
12 | | df-pw 3724 |
. . . . . . . . . . . 12
⊢ ℘A =
{z ∣
z ⊆
A} |
13 | 12 | abeq2i 2460 |
. . . . . . . . . . 11
⊢ (z ∈ ℘A ↔
z ⊆
A) |
14 | 13 | anbi1i 676 |
. . . . . . . . . 10
⊢ ((z ∈ ℘A ∧ x = ℘1z) ↔ (z
⊆ A
∧ x =
℘1z)) |
15 | 14 | exbii 1582 |
. . . . . . . . 9
⊢ (∃z(z ∈ ℘A ∧ x = ℘1z) ↔ ∃z(z ⊆ A ∧ x = ℘1z)) |
16 | 11, 15 | bitr2i 241 |
. . . . . . . 8
⊢ (∃z(z ⊆ A ∧ x = ℘1z) ↔ ∃z ∈ ℘ Ax = ℘1z) |
17 | 9, 10, 16 | 3bitri 262 |
. . . . . . 7
⊢ (x ∈ ℘℘1A ↔ ∃z ∈ ℘ Ax = ℘1z) |
18 | | df-rex 2620 |
. . . . . . . 8
⊢ (∃y ∈ ℘1
℘Ay Pw1Fn x ↔ ∃y(y ∈ ℘1℘A ∧ y Pw1Fn x)) |
19 | | elpw1 4144 |
. . . . . . . . . . 11
⊢ (y ∈ ℘1℘A ↔
∃z ∈ ℘ Ay = {z}) |
20 | 19 | anbi1i 676 |
. . . . . . . . . 10
⊢ ((y ∈ ℘1℘A ∧ y Pw1Fn x) ↔
(∃z
∈ ℘
Ay =
{z} ∧
y Pw1Fn
x)) |
21 | | r19.41v 2764 |
. . . . . . . . . 10
⊢ (∃z ∈ ℘ A(y = {z} ∧ y Pw1Fn x) ↔ (∃z ∈ ℘ Ay = {z} ∧ y Pw1Fn x)) |
22 | 20, 21 | bitr4i 243 |
. . . . . . . . 9
⊢ ((y ∈ ℘1℘A ∧ y Pw1Fn x) ↔
∃z ∈ ℘ A(y = {z} ∧ y Pw1Fn x)) |
23 | 22 | exbii 1582 |
. . . . . . . 8
⊢ (∃y(y ∈ ℘1℘A ∧ y Pw1Fn x) ↔
∃y∃z ∈ ℘ A(y = {z} ∧ y Pw1Fn x)) |
24 | | rexcom4 2878 |
. . . . . . . . 9
⊢ (∃z ∈ ℘ A∃y(y = {z} ∧ y Pw1Fn x) ↔ ∃y∃z ∈ ℘ A(y = {z} ∧ y Pw1Fn x)) |
25 | | snex 4111 |
. . . . . . . . . . . 12
⊢ {z} ∈
V |
26 | | breq1 4642 |
. . . . . . . . . . . 12
⊢ (y = {z} →
(y Pw1Fn
x ↔ {z} Pw1Fn x)) |
27 | 25, 26 | ceqsexv 2894 |
. . . . . . . . . . 11
⊢ (∃y(y = {z} ∧ y Pw1Fn x) ↔
{z} Pw1Fn
x) |
28 | | vex 2862 |
. . . . . . . . . . . 12
⊢ z ∈
V |
29 | 28 | brpw1fn 5854 |
. . . . . . . . . . 11
⊢ ({z} Pw1Fn x ↔ x =
℘1z) |
30 | 27, 29 | bitri 240 |
. . . . . . . . . 10
⊢ (∃y(y = {z} ∧ y Pw1Fn x) ↔
x = ℘1z) |
31 | 30 | rexbii 2639 |
. . . . . . . . 9
⊢ (∃z ∈ ℘ A∃y(y = {z} ∧ y Pw1Fn x) ↔ ∃z ∈ ℘ Ax = ℘1z) |
32 | 24, 31 | bitr3i 242 |
. . . . . . . 8
⊢ (∃y∃z ∈ ℘ A(y = {z} ∧ y Pw1Fn x) ↔ ∃z ∈ ℘ Ax = ℘1z) |
33 | 18, 23, 32 | 3bitri 262 |
. . . . . . 7
⊢ (∃y ∈ ℘1
℘Ay Pw1Fn x ↔ ∃z ∈ ℘ Ax = ℘1z) |
34 | 17, 33 | bitr4i 243 |
. . . . . 6
⊢ (x ∈ ℘℘1A ↔ ∃y ∈ ℘1
℘Ay Pw1Fn x) |
35 | 34 | abbi2i 2464 |
. . . . 5
⊢ ℘℘1A = {x ∣ ∃y ∈ ℘1 ℘Ay Pw1Fn x} |
36 | 7, 35 | eqtr4i 2376 |
. . . 4
⊢ ( Pw1Fn “ ℘1℘A) = ℘℘1A |
37 | | f1oeq3 5283 |
. . . 4
⊢ (( Pw1Fn “ ℘1℘A) = ℘℘1A → (( Pw1Fn ↾ ℘1℘A):℘1℘A–1-1-onto→(
Pw1Fn “ ℘1℘A) ↔ (
Pw1Fn ↾ ℘1℘A):℘1℘A–1-1-onto→℘℘1A)) |
38 | 36, 37 | ax-mp 5 |
. . 3
⊢ (( Pw1Fn ↾ ℘1℘A):℘1℘A–1-1-onto→(
Pw1Fn “ ℘1℘A) ↔ (
Pw1Fn ↾ ℘1℘A):℘1℘A–1-1-onto→℘℘1A) |
39 | 6, 38 | mpbi 199 |
. 2
⊢ ( Pw1Fn ↾ ℘1℘A):℘1℘A–1-1-onto→℘℘1A |
40 | | pw1fnex 5852 |
. . . 4
⊢ Pw1Fn ∈
V |
41 | | enpw1pw.1 |
. . . . . 6
⊢ A ∈
V |
42 | 41 | pwex 4329 |
. . . . 5
⊢ ℘A ∈ V |
43 | 42 | pw1ex 4303 |
. . . 4
⊢ ℘1℘A ∈ V |
44 | 40, 43 | resex 5117 |
. . 3
⊢ ( Pw1Fn ↾ ℘1℘A) ∈ V |
45 | 44 | f1oen 6033 |
. 2
⊢ (( Pw1Fn ↾ ℘1℘A):℘1℘A–1-1-onto→℘℘1A → ℘1℘A ≈
℘℘1A) |
46 | 39, 45 | ax-mp 5 |
1
⊢ ℘1℘A ≈
℘℘1A |