| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > f1oiso2 | Unicode version | ||
| Description: Any one-to-one onto
function determines an isomorphism with an induced
       relation  | 
| Ref | Expression | 
|---|---|
| f1oiso2.1 | 
 | 
| Ref | Expression | 
|---|---|
| f1oiso2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1oiso2.1 | 
. . 3
 | |
| 2 | f1ocnvdm 5482 | 
. . . . . . . . 9
 | |
| 3 | 2 | adantrr 697 | 
. . . . . . . 8
 | 
| 4 | 3 | 3adant3 975 | 
. . . . . . 7
 | 
| 5 | f1ocnvdm 5482 | 
. . . . . . . . . 10
 | |
| 6 | 5 | adantrl 696 | 
. . . . . . . . 9
 | 
| 7 | 6 | 3adant3 975 | 
. . . . . . . 8
 | 
| 8 | f1ocnvfv2 5478 | 
. . . . . . . . . . 11
 | |
| 9 | 8 | eqcomd 2358 | 
. . . . . . . . . 10
 | 
| 10 | f1ocnvfv2 5478 | 
. . . . . . . . . . 11
 | |
| 11 | 10 | eqcomd 2358 | 
. . . . . . . . . 10
 | 
| 12 | 9, 11 | anim12dan 810 | 
. . . . . . . . 9
 | 
| 13 | 12 | 3adant3 975 | 
. . . . . . . 8
 | 
| 14 | simp3 957 | 
. . . . . . . 8
 | |
| 15 | fveq2 5329 | 
. . . . . . . . . . . 12
 | |
| 16 | 15 | eqeq2d 2364 | 
. . . . . . . . . . 11
 | 
| 17 | 16 | anbi2d 684 | 
. . . . . . . . . 10
 | 
| 18 | breq2 4644 | 
. . . . . . . . . 10
 | |
| 19 | 17, 18 | anbi12d 691 | 
. . . . . . . . 9
 | 
| 20 | 19 | rspcev 2956 | 
. . . . . . . 8
 | 
| 21 | 7, 13, 14, 20 | syl12anc 1180 | 
. . . . . . 7
 | 
| 22 | fveq2 5329 | 
. . . . . . . . . . . 12
 | |
| 23 | 22 | eqeq2d 2364 | 
. . . . . . . . . . 11
 | 
| 24 | 23 | anbi1d 685 | 
. . . . . . . . . 10
 | 
| 25 | breq1 4643 | 
. . . . . . . . . 10
 | |
| 26 | 24, 25 | anbi12d 691 | 
. . . . . . . . 9
 | 
| 27 | 26 | rexbidv 2636 | 
. . . . . . . 8
 | 
| 28 | 27 | rspcev 2956 | 
. . . . . . 7
 | 
| 29 | 4, 21, 28 | syl2anc 642 | 
. . . . . 6
 | 
| 30 | 29 | 3expib 1154 | 
. . . . 5
 | 
| 31 | simp3ll 1026 | 
. . . . . . . . 9
 | |
| 32 | simp1 955 | 
. . . . . . . . . 10
 | |
| 33 | simp2l 981 | 
. . . . . . . . . 10
 | |
| 34 | f1of 5288 | 
. . . . . . . . . . 11
 | |
| 35 | ffvelrn 5416 | 
. . . . . . . . . . 11
 | |
| 36 | 34, 35 | sylan 457 | 
. . . . . . . . . 10
 | 
| 37 | 32, 33, 36 | syl2anc 642 | 
. . . . . . . . 9
 | 
| 38 | 31, 37 | eqeltrd 2427 | 
. . . . . . . 8
 | 
| 39 | simp3lr 1027 | 
. . . . . . . . 9
 | |
| 40 | simp2r 982 | 
. . . . . . . . . 10
 | |
| 41 | ffvelrn 5416 | 
. . . . . . . . . . 11
 | |
| 42 | 34, 41 | sylan 457 | 
. . . . . . . . . 10
 | 
| 43 | 32, 40, 42 | syl2anc 642 | 
. . . . . . . . 9
 | 
| 44 | 39, 43 | eqeltrd 2427 | 
. . . . . . . 8
 | 
| 45 | simp3r 984 | 
. . . . . . . . 9
 | |
| 46 | 31 | eqcomd 2358 | 
. . . . . . . . . 10
 | 
| 47 | f1ocnvfv 5479 | 
. . . . . . . . . . 11
 | |
| 48 | 32, 33, 47 | syl2anc 642 | 
. . . . . . . . . 10
 | 
| 49 | 46, 48 | mpd 14 | 
. . . . . . . . 9
 | 
| 50 | 39 | eqcomd 2358 | 
. . . . . . . . . 10
 | 
| 51 | f1ocnvfv 5479 | 
. . . . . . . . . . 11
 | |
| 52 | 32, 40, 51 | syl2anc 642 | 
. . . . . . . . . 10
 | 
| 53 | 50, 52 | mpd 14 | 
. . . . . . . . 9
 | 
| 54 | 45, 49, 53 | 3brtr4d 4670 | 
. . . . . . . 8
 | 
| 55 | 38, 44, 54 | jca31 520 | 
. . . . . . 7
 | 
| 56 | 55 | 3exp 1150 | 
. . . . . 6
 | 
| 57 | 56 | rexlimdvv 2745 | 
. . . . 5
 | 
| 58 | 30, 57 | impbid 183 | 
. . . 4
 | 
| 59 | 58 | opabbidv 4626 | 
. . 3
 | 
| 60 | 1, 59 | syl5eq 2397 | 
. 2
 | 
| 61 | f1oiso 5500 | 
. 2
 | |
| 62 | 60, 61 | mpdan 649 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-iso 4797 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |