| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > mapexi | Unicode version | ||
| Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by set.mm contributors, 25-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| mapexi.1 | 
 | 
| mapexi.2 | 
 | 
| Ref | Expression | 
|---|---|
| mapexi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elin 3220 | 
. . . . . 6
 | |
| 2 | vex 2863 | 
. . . . . . . 8
 | |
| 3 | 2 | elfuns 5830 | 
. . . . . . 7
 | 
| 4 | elimasn 5020 | 
. . . . . . . 8
 | |
| 5 | df-br 4641 | 
. . . . . . . 8
 | |
| 6 | brcnv 4893 | 
. . . . . . . . 9
 | |
| 7 | mapexi.1 | 
. . . . . . . . . . 11
 | |
| 8 | 2, 7 | brimage 5794 | 
. . . . . . . . . 10
 | 
| 9 | dfdm4 5508 | 
. . . . . . . . . . 11
 | |
| 10 | 9 | eqeq2i 2363 | 
. . . . . . . . . 10
 | 
| 11 | eqcom 2355 | 
. . . . . . . . . 10
 | |
| 12 | 8, 10, 11 | 3bitr2i 264 | 
. . . . . . . . 9
 | 
| 13 | 6, 12 | bitri 240 | 
. . . . . . . 8
 | 
| 14 | 4, 5, 13 | 3bitr2i 264 | 
. . . . . . 7
 | 
| 15 | 3, 14 | anbi12i 678 | 
. . . . . 6
 | 
| 16 | 1, 15 | bitri 240 | 
. . . . 5
 | 
| 17 | vex 2863 | 
. . . . . . . . . 10
 | |
| 18 | 2, 17 | brimage 5794 | 
. . . . . . . . 9
 | 
| 19 | brcnv 4893 | 
. . . . . . . . 9
 | |
| 20 | dfrn5 5509 | 
. . . . . . . . . 10
 | |
| 21 | 20 | eqeq2i 2363 | 
. . . . . . . . 9
 | 
| 22 | 18, 19, 21 | 3bitr4i 268 | 
. . . . . . . 8
 | 
| 23 | 22 | rexbii 2640 | 
. . . . . . 7
 | 
| 24 | elima 4755 | 
. . . . . . 7
 | |
| 25 | risset 2662 | 
. . . . . . 7
 | |
| 26 | 23, 24, 25 | 3bitr4i 268 | 
. . . . . 6
 | 
| 27 | 2 | rnex 5108 | 
. . . . . . 7
 | 
| 28 | 27 | elpw 3729 | 
. . . . . 6
 | 
| 29 | 26, 28 | bitri 240 | 
. . . . 5
 | 
| 30 | 16, 29 | anbi12i 678 | 
. . . 4
 | 
| 31 | elin 3220 | 
. . . 4
 | |
| 32 | df-f 4792 | 
. . . . 5
 | |
| 33 | df-fn 4791 | 
. . . . . 6
 | |
| 34 | 33 | anbi1i 676 | 
. . . . 5
 | 
| 35 | 32, 34 | bitri 240 | 
. . . 4
 | 
| 36 | 30, 31, 35 | 3bitr4i 268 | 
. . 3
 | 
| 37 | 36 | eqabi 2465 | 
. 2
 | 
| 38 | funsex 5829 | 
. . . 4
 | |
| 39 | 1stex 4740 | 
. . . . . . 7
 | |
| 40 | 39 | imageex 5802 | 
. . . . . 6
 | 
| 41 | 40 | cnvex 5103 | 
. . . . 5
 | 
| 42 | snex 4112 | 
. . . . 5
 | |
| 43 | 41, 42 | imaex 4748 | 
. . . 4
 | 
| 44 | 38, 43 | inex 4106 | 
. . 3
 | 
| 45 | 2ndex 5113 | 
. . . . . 6
 | |
| 46 | 45 | imageex 5802 | 
. . . . 5
 | 
| 47 | 46 | cnvex 5103 | 
. . . 4
 | 
| 48 | mapexi.2 | 
. . . . 5
 | |
| 49 | 48 | pwex 4330 | 
. . . 4
 | 
| 50 | 47, 49 | imaex 4748 | 
. . 3
 | 
| 51 | 44, 50 | inex 4106 | 
. 2
 | 
| 52 | 37, 51 | eqeltrri 2424 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 | 
| This theorem is referenced by: mapex 6007 fnmap 6008 | 
| Copyright terms: Public domain | W3C validator |