NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mapexi Unicode version

Theorem mapexi 6004
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by set.mm contributors, 25-Feb-2015.)
Hypotheses
Ref Expression
mapexi.1
mapexi.2
Assertion
Ref Expression
mapexi
Distinct variable groups:   ,   ,

Proof of Theorem mapexi
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elin 3220 . . . . . 6 Funs Image Funs Image
2 vex 2863 . . . . . . . 8
32elfuns 5830 . . . . . . 7 Funs
4 elimasn 5020 . . . . . . . 8 Image Image
5 df-br 4641 . . . . . . . 8 Image Image
6 brcnv 4893 . . . . . . . . 9 Image Image
7 mapexi.1 . . . . . . . . . . 11
82, 7brimage 5794 . . . . . . . . . 10 Image
9 dfdm4 5508 . . . . . . . . . . 11
109eqeq2i 2363 . . . . . . . . . 10
11 eqcom 2355 . . . . . . . . . 10
128, 10, 113bitr2i 264 . . . . . . . . 9 Image
136, 12bitri 240 . . . . . . . 8 Image
144, 5, 133bitr2i 264 . . . . . . 7 Image
153, 14anbi12i 678 . . . . . 6 Funs Image
161, 15bitri 240 . . . . 5 Funs Image
17 vex 2863 . . . . . . . . . 10
182, 17brimage 5794 . . . . . . . . 9 Image
19 brcnv 4893 . . . . . . . . 9 Image Image
20 dfrn5 5509 . . . . . . . . . 10
2120eqeq2i 2363 . . . . . . . . 9
2218, 19, 213bitr4i 268 . . . . . . . 8 Image
2322rexbii 2640 . . . . . . 7 Image
24 elima 4755 . . . . . . 7 Image Image
25 risset 2662 . . . . . . 7
2623, 24, 253bitr4i 268 . . . . . 6 Image
272rnex 5108 . . . . . . 7
2827elpw 3729 . . . . . 6
2926, 28bitri 240 . . . . 5 Image
3016, 29anbi12i 678 . . . 4 Funs Image Image
31 elin 3220 . . . 4 Funs Image Image Funs Image Image
32 df-f 4792 . . . . 5
33 df-fn 4791 . . . . . 6
3433anbi1i 676 . . . . 5
3532, 34bitri 240 . . . 4
3630, 31, 353bitr4i 268 . . 3 Funs Image Image
3736abbi2i 2465 . 2 Funs Image Image
38 funsex 5829 . . . 4 Funs
39 1stex 4740 . . . . . . 7
4039imageex 5802 . . . . . 6 Image
4140cnvex 5103 . . . . 5 Image
42 snex 4112 . . . . 5
4341, 42imaex 4748 . . . 4 Image
4438, 43inex 4106 . . 3 Funs Image
45 2ndex 5113 . . . . . 6
4645imageex 5802 . . . . 5 Image
4746cnvex 5103 . . . 4 Image
48 mapexi.2 . . . . 5
4948pwex 4330 . . . 4
5047, 49imaex 4748 . . 3 Image
5144, 50inex 4106 . 2 Funs Image Image
5237, 51eqeltrri 2424 1
Colors of variables: wff setvar class
Syntax hints:   wa 358   wceq 1642   wcel 1710  cab 2339  wrex 2616  cvv 2860   cin 3209   wss 3258  cpw 3723  csn 3738  cop 4562   class class class wbr 4640  c1st 4718  cima 4723  ccnv 4772   cdm 4773   crn 4774   wfun 4776   wfn 4777  wf 4778  c2nd 4784  Imagecimage 5754   Funs cfuns 5760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761
This theorem is referenced by:  mapex  6007  fnmap  6008
  Copyright terms: Public domain W3C validator