New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > brimage | Unicode version |
Description: Binary relationship over the image function. (Contributed by SF, 11-Feb-2015.) |
Ref | Expression |
---|---|
brimage.1 | |
brimage.2 |
Ref | Expression |
---|---|
brimage | Image |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elima1c 4948 | . . . 4 Ins2 S Ins3 S SI 1c Ins2 S Ins3 S SI | |
2 | elsymdif 3224 | . . . . . 6 Ins2 S Ins3 S SI Ins2 S Ins3 S SI | |
3 | brimage.1 | . . . . . . . . 9 | |
4 | 3 | otelins2 5792 | . . . . . . . 8 Ins2 S S |
5 | vex 2863 | . . . . . . . . 9 | |
6 | brimage.2 | . . . . . . . . 9 | |
7 | 5, 6 | opelssetsn 4761 | . . . . . . . 8 S |
8 | 4, 7 | bitri 240 | . . . . . . 7 Ins2 S |
9 | 6 | otelins3 5793 | . . . . . . . 8 Ins3 S SI S SI |
10 | brcnv 4893 | . . . . . . . . . . . . . 14 SI SI | |
11 | 5 | brsnsi2 5777 | . . . . . . . . . . . . . 14 SI |
12 | 10, 11 | bitri 240 | . . . . . . . . . . . . 13 SI |
13 | 12 | anbi1i 676 | . . . . . . . . . . . 12 SI S S |
14 | 19.41v 1901 | . . . . . . . . . . . 12 S S | |
15 | 13, 14 | bitr4i 243 | . . . . . . . . . . 11 SI S S |
16 | 15 | exbii 1582 | . . . . . . . . . 10 SI S S |
17 | excom 1741 | . . . . . . . . . 10 S S | |
18 | anass 630 | . . . . . . . . . . . . 13 S S | |
19 | 18 | exbii 1582 | . . . . . . . . . . . 12 S S |
20 | snex 4112 | . . . . . . . . . . . . 13 | |
21 | breq1 4643 | . . . . . . . . . . . . . . 15 S S | |
22 | 21 | anbi2d 684 | . . . . . . . . . . . . . 14 S S |
23 | ancom 437 | . . . . . . . . . . . . . . 15 S S | |
24 | vex 2863 | . . . . . . . . . . . . . . . . 17 | |
25 | 24, 3 | brssetsn 4760 | . . . . . . . . . . . . . . . 16 S |
26 | 25 | anbi1i 676 | . . . . . . . . . . . . . . 15 S |
27 | 23, 26 | bitri 240 | . . . . . . . . . . . . . 14 S |
28 | 22, 27 | syl6bb 252 | . . . . . . . . . . . . 13 S |
29 | 20, 28 | ceqsexv 2895 | . . . . . . . . . . . 12 S |
30 | 19, 29 | bitri 240 | . . . . . . . . . . 11 S |
31 | 30 | exbii 1582 | . . . . . . . . . 10 S |
32 | 16, 17, 31 | 3bitri 262 | . . . . . . . . 9 SI S |
33 | opelco 4885 | . . . . . . . . 9 S SI SI S | |
34 | elima2 4756 | . . . . . . . . 9 | |
35 | 32, 33, 34 | 3bitr4i 268 | . . . . . . . 8 S SI |
36 | 9, 35 | bitri 240 | . . . . . . 7 Ins3 S SI |
37 | 8, 36 | bibi12i 306 | . . . . . 6 Ins2 S Ins3 S SI |
38 | 2, 37 | xchbinx 301 | . . . . 5 Ins2 S Ins3 S SI |
39 | 38 | exbii 1582 | . . . 4 Ins2 S Ins3 S SI |
40 | exnal 1574 | . . . 4 | |
41 | 1, 39, 40 | 3bitri 262 | . . 3 Ins2 S Ins3 S SI 1c |
42 | 41 | con2bii 322 | . 2 Ins2 S Ins3 S SI 1c |
43 | dfcleq 2347 | . 2 | |
44 | df-image 5755 | . . . 4 Image ∼ Ins2 S Ins3 S SI 1c | |
45 | 44 | breqi 4646 | . . 3 Image ∼ Ins2 S Ins3 S SI 1c |
46 | df-br 4641 | . . 3 ∼ Ins2 S Ins3 S SI 1c ∼ Ins2 S Ins3 S SI 1c | |
47 | 3, 6 | opex 4589 | . . . 4 |
48 | 47 | elcompl 3226 | . . 3 ∼ Ins2 S Ins3 S SI 1c Ins2 S Ins3 S SI 1c |
49 | 45, 46, 48 | 3bitri 262 | . 2 Image Ins2 S Ins3 S SI 1c |
50 | 42, 43, 49 | 3bitr4ri 269 | 1 Image |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 cvv 2860 ∼ ccompl 3206 csymdif 3210 csn 3738 1cc1c 4135 cop 4562 class class class wbr 4640 S csset 4720 SI csi 4721 ccom 4722 cima 4723 ccnv 4772 Ins2 cins2 5750 Ins3 cins3 5752 Imagecimage 5754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-cnv 4786 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 |
This theorem is referenced by: fnsex 5833 clos1ex 5877 mapexi 6004 enex 6032 ovcelem1 6172 ceex 6175 nchoicelem10 6299 |
Copyright terms: Public domain | W3C validator |