New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nchoicelem8 | Unicode version |
Description: Lemma for nchoice 6309. An anti-closure condition for cardinal exponentiation to zero. Theorem 4.5 of [Specker] p. 973. (Contributed by SF, 18-Mar-2015.) |
Ref | Expression |
---|---|
nchoicelem8 | c We NC NC ↑c 0c NC Nc 1c c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ce0lenc1 6240 | . . . 4 NC ↑c 0c NC c Nc 1c | |
2 | 1 | notbid 285 | . . 3 NC ↑c 0c NC c Nc 1c |
3 | 2 | adantl 452 | . 2 c We NC NC ↑c 0c NC c Nc 1c |
4 | df-we 5907 | . . . . . . . . . 10 We Or Fr | |
5 | 4 | breqi 4646 | . . . . . . . . 9 c We NC c Or Fr NC |
6 | brin 4694 | . . . . . . . . 9 c Or Fr NC c Or NC c Fr NC | |
7 | 5, 6 | bitri 240 | . . . . . . . 8 c We NC c Or NC c Fr NC |
8 | sopc 5935 | . . . . . . . . . 10 c Or NC c Po NC c Connex NC | |
9 | 8 | simprbi 450 | . . . . . . . . 9 c Or NC c Connex NC |
10 | 9 | adantr 451 | . . . . . . . 8 c Or NC c Fr NC c Connex NC |
11 | 7, 10 | sylbi 187 | . . . . . . 7 c We NC c Connex NC |
12 | simpl 443 | . . . . . . . 8 c Connex NC NC c Connex NC | |
13 | simpr 447 | . . . . . . . 8 c Connex NC NC NC | |
14 | 1cex 4143 | . . . . . . . . . 10 1c | |
15 | 14 | ncelncsi 6122 | . . . . . . . . 9 Nc 1c NC |
16 | 15 | a1i 10 | . . . . . . . 8 c Connex NC NC Nc 1c NC |
17 | 12, 13, 16 | connexd 5932 | . . . . . . 7 c Connex NC NC c Nc 1c Nc 1c c |
18 | 11, 17 | sylan 457 | . . . . . 6 c We NC NC c Nc 1c Nc 1c c |
19 | 18 | ord 366 | . . . . 5 c We NC NC c Nc 1c Nc 1c c |
20 | id 19 | . . . . . . . 8 Nc 1c Nc 1c | |
21 | nclecid 6198 | . . . . . . . . 9 Nc 1c NC Nc 1c c Nc 1c | |
22 | 15, 21 | ax-mp 5 | . . . . . . . 8 Nc 1c c Nc 1c |
23 | 20, 22 | syl6eqbrr 4678 | . . . . . . 7 Nc 1c c Nc 1c |
24 | 23 | necon3bi 2558 | . . . . . 6 c Nc 1c Nc 1c |
25 | 24 | a1i 10 | . . . . 5 c We NC NC c Nc 1c Nc 1c |
26 | 19, 25 | jcad 519 | . . . 4 c We NC NC c Nc 1c Nc 1c c Nc 1c |
27 | 7 | simplbi 446 | . . . . . . . . . . 11 c We NC c Or NC |
28 | 8 | simplbi 446 | . . . . . . . . . . 11 c Or NC c Po NC |
29 | df-partial 5903 | . . . . . . . . . . . . . 14 Po Ref Trans Antisym | |
30 | 29 | breqi 4646 | . . . . . . . . . . . . 13 c Po NC c Ref Trans Antisym NC |
31 | brin 4694 | . . . . . . . . . . . . 13 c Ref Trans Antisym NC c Ref Trans NC c Antisym NC | |
32 | 30, 31 | bitri 240 | . . . . . . . . . . . 12 c Po NC c Ref Trans NC c Antisym NC |
33 | 32 | simprbi 450 | . . . . . . . . . . 11 c Po NC c Antisym NC |
34 | 27, 28, 33 | 3syl 18 | . . . . . . . . . 10 c We NC c Antisym NC |
35 | 34 | adantr 451 | . . . . . . . . 9 c We NC NC c Antisym NC |
36 | 35 | adantr 451 | . . . . . . . 8 c We NC NC Nc 1c c c Nc 1c c Antisym NC |
37 | 15 | a1i 10 | . . . . . . . 8 c We NC NC Nc 1c c c Nc 1c Nc 1c NC |
38 | simplr 731 | . . . . . . . 8 c We NC NC Nc 1c c c Nc 1c NC | |
39 | simprl 732 | . . . . . . . 8 c We NC NC Nc 1c c c Nc 1c Nc 1c c | |
40 | simprr 733 | . . . . . . . 8 c We NC NC Nc 1c c c Nc 1c c Nc 1c | |
41 | 36, 37, 38, 39, 40 | antid 5930 | . . . . . . 7 c We NC NC Nc 1c c c Nc 1c Nc 1c |
42 | 41 | expr 598 | . . . . . 6 c We NC NC Nc 1c c c Nc 1c Nc 1c |
43 | 42 | necon3ad 2553 | . . . . 5 c We NC NC Nc 1c c Nc 1c c Nc 1c |
44 | 43 | expimpd 586 | . . . 4 c We NC NC Nc 1c c Nc 1c c Nc 1c |
45 | 26, 44 | impbid 183 | . . 3 c We NC NC c Nc 1c Nc 1c c Nc 1c |
46 | brltc 6115 | . . 3 Nc 1c c Nc 1c c Nc 1c | |
47 | 45, 46 | syl6bbr 254 | . 2 c We NC NC c Nc 1c Nc 1c c |
48 | 3, 47 | bitrd 244 | 1 c We NC NC ↑c 0c NC Nc 1c c |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wo 357 wa 358 wceq 1642 wcel 1710 wne 2517 cin 3209 1cc1c 4135 0cc0c 4375 class class class wbr 4640 (class class class)co 5526 Trans ctrans 5889 Ref cref 5890 Antisym cantisym 5891 Po cpartial 5892 Connex cconnex 5893 Or cstrict 5894 Fr cfound 5895 We cwe 5896 NC cncs 6089 c clec 6090 c cltc 6091 Nc cnc 6092 ↑c cce 6097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-compose 5749 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-trans 5900 df-antisym 5902 df-partial 5903 df-connex 5904 df-strict 5905 df-we 5907 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-lec 6100 df-ltc 6101 df-nc 6102 df-tc 6104 df-ce 6107 |
This theorem is referenced by: nchoicelem9 6298 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |