Proof of Theorem nchoicelem8
| Step | Hyp | Ref
| Expression |
| 1 | | ce0lenc1 6240 |
. . . 4
 NC   ↑c
0c
NC c Nc 1c  |
| 2 | 1 | notbid 285 |
. . 3
 NC   ↑c
0c
NC c Nc 1c  |
| 3 | 2 | adantl 452 |
. 2
 c We NC NC  
↑c 0c NC c Nc 1c  |
| 4 | | df-we 5907 |
. . . . . . . . . 10
We Or Fr  |
| 5 | 4 | breqi 4646 |
. . . . . . . . 9
c We
NC c Or Fr NC  |
| 6 | | brin 4694 |
. . . . . . . . 9
c Or Fr NC c Or NC c Fr NC   |
| 7 | 5, 6 | bitri 240 |
. . . . . . . 8
c We
NC c Or NC c Fr NC   |
| 8 | | sopc 5935 |
. . . . . . . . . 10
c Or
NC c Po NC c Connex NC   |
| 9 | 8 | simprbi 450 |
. . . . . . . . 9
c Or
NC c Connex NC  |
| 10 | 9 | adantr 451 |
. . . . . . . 8
 c Or NC c Fr NC c Connex NC  |
| 11 | 7, 10 | sylbi 187 |
. . . . . . 7
c We
NC c Connex NC  |
| 12 | | simpl 443 |
. . . . . . . 8
 c Connex NC NC c Connex NC  |
| 13 | | simpr 447 |
. . . . . . . 8
 c Connex NC NC NC  |
| 14 | | 1cex 4143 |
. . . . . . . . . 10
1c
 |
| 15 | 14 | ncelncsi 6122 |
. . . . . . . . 9
Nc 1c NC |
| 16 | 15 | a1i 10 |
. . . . . . . 8
 c Connex NC NC Nc 1c NC  |
| 17 | 12, 13, 16 | connexd 5932 |
. . . . . . 7
 c Connex NC NC  c Nc 1c
Nc 1c c    |
| 18 | 11, 17 | sylan 457 |
. . . . . 6
 c We NC NC  c Nc 1c
Nc 1c c    |
| 19 | 18 | ord 366 |
. . . . 5
 c We NC NC  c Nc 1c
Nc 1c c    |
| 20 | | id 19 |
. . . . . . . 8
Nc 1c Nc 1c   |
| 21 | | nclecid 6198 |
. . . . . . . . 9
Nc 1c NC Nc 1c c Nc
1c |
| 22 | 15, 21 | ax-mp 5 |
. . . . . . . 8
Nc 1c c Nc
1c |
| 23 | 20, 22 | syl6eqbrr 4678 |
. . . . . . 7
Nc 1c c Nc 1c |
| 24 | 23 | necon3bi 2558 |
. . . . . 6
 c Nc 1c
Nc 1c   |
| 25 | 24 | a1i 10 |
. . . . 5
 c We NC NC  c Nc 1c
Nc 1c    |
| 26 | 19, 25 | jcad 519 |
. . . 4
 c We NC NC  c Nc 1c
Nc
1c c Nc 1c     |
| 27 | 7 | simplbi 446 |
. . . . . . . . . . 11
c We
NC c Or NC  |
| 28 | 8 | simplbi 446 |
. . . . . . . . . . 11
c Or
NC c Po NC  |
| 29 | | df-partial 5903 |
. . . . . . . . . . . . . 14
Po  Ref Trans Antisym  |
| 30 | 29 | breqi 4646 |
. . . . . . . . . . . . 13
c Po
NC c 
Ref Trans Antisym NC  |
| 31 | | brin 4694 |
. . . . . . . . . . . . 13
c  Ref Trans Antisym NC c
Ref Trans NC c Antisym NC   |
| 32 | 30, 31 | bitri 240 |
. . . . . . . . . . . 12
c Po
NC c
Ref Trans NC c Antisym NC   |
| 33 | 32 | simprbi 450 |
. . . . . . . . . . 11
c Po
NC c Antisym NC  |
| 34 | 27, 28, 33 | 3syl 18 |
. . . . . . . . . 10
c We
NC c Antisym NC  |
| 35 | 34 | adantr 451 |
. . . . . . . . 9
 c We NC NC c Antisym NC  |
| 36 | 35 | adantr 451 |
. . . . . . . 8
  c We NC NC Nc 1c c c Nc 1c c Antisym NC  |
| 37 | 15 | a1i 10 |
. . . . . . . 8
  c We NC NC Nc 1c c c Nc 1c Nc 1c
NC  |
| 38 | | simplr 731 |
. . . . . . . 8
  c We NC NC Nc 1c c c Nc 1c NC  |
| 39 | | simprl 732 |
. . . . . . . 8
  c We NC NC Nc 1c c c Nc 1c Nc 1c
c   |
| 40 | | simprr 733 |
. . . . . . . 8
  c We NC NC Nc 1c c c Nc 1c c Nc 1c |
| 41 | 36, 37, 38, 39, 40 | antid 5930 |
. . . . . . 7
  c We NC NC Nc 1c c c Nc 1c Nc 1c
  |
| 42 | 41 | expr 598 |
. . . . . 6
  c We NC NC Nc 1c c   c Nc 1c
Nc 1c    |
| 43 | 42 | necon3ad 2553 |
. . . . 5
  c We NC NC Nc 1c c  Nc 1c c Nc 1c  |
| 44 | 43 | expimpd 586 |
. . . 4
 c We NC NC  Nc
1c c Nc 1c 
c Nc
1c  |
| 45 | 26, 44 | impbid 183 |
. . 3
 c We NC NC  c Nc 1c
Nc 1c c Nc 1c     |
| 46 | | brltc 6115 |
. . 3
Nc 1c c Nc 1c c Nc
1c    |
| 47 | 45, 46 | syl6bbr 254 |
. 2
 c We NC NC  c Nc 1c
Nc 1c c    |
| 48 | 3, 47 | bitrd 244 |
1
 c We NC NC  
↑c 0c NC Nc
1c c    |