New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nchoicelem8 | Unicode version |
Description: Lemma for nchoice 6308. An anti-closure condition for cardinal exponentiation to zero. Theorem 4.5 of [Specker] p. 973. (Contributed by SF, 18-Mar-2015.) |
Ref | Expression |
---|---|
nchoicelem8 | c We NC NC ↑c 0c NC Nc 1c c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ce0lenc1 6239 | . . . 4 NC ↑c 0c NC c Nc 1c | |
2 | 1 | notbid 285 | . . 3 NC ↑c 0c NC c Nc 1c |
3 | 2 | adantl 452 | . 2 c We NC NC ↑c 0c NC c Nc 1c |
4 | df-we 5906 | . . . . . . . . . 10 We Or Fr | |
5 | 4 | breqi 4645 | . . . . . . . . 9 c We NC c Or Fr NC |
6 | brin 4693 | . . . . . . . . 9 c Or Fr NC c Or NC c Fr NC | |
7 | 5, 6 | bitri 240 | . . . . . . . 8 c We NC c Or NC c Fr NC |
8 | sopc 5934 | . . . . . . . . . 10 c Or NC c Po NC c Connex NC | |
9 | 8 | simprbi 450 | . . . . . . . . 9 c Or NC c Connex NC |
10 | 9 | adantr 451 | . . . . . . . 8 c Or NC c Fr NC c Connex NC |
11 | 7, 10 | sylbi 187 | . . . . . . 7 c We NC c Connex NC |
12 | simpl 443 | . . . . . . . 8 c Connex NC NC c Connex NC | |
13 | simpr 447 | . . . . . . . 8 c Connex NC NC NC | |
14 | 1cex 4142 | . . . . . . . . . 10 1c | |
15 | 14 | ncelncsi 6121 | . . . . . . . . 9 Nc 1c NC |
16 | 15 | a1i 10 | . . . . . . . 8 c Connex NC NC Nc 1c NC |
17 | 12, 13, 16 | connexd 5931 | . . . . . . 7 c Connex NC NC c Nc 1c Nc 1c c |
18 | 11, 17 | sylan 457 | . . . . . 6 c We NC NC c Nc 1c Nc 1c c |
19 | 18 | ord 366 | . . . . 5 c We NC NC c Nc 1c Nc 1c c |
20 | id 19 | . . . . . . . 8 Nc 1c Nc 1c | |
21 | nclecid 6197 | . . . . . . . . 9 Nc 1c NC Nc 1c c Nc 1c | |
22 | 15, 21 | ax-mp 5 | . . . . . . . 8 Nc 1c c Nc 1c |
23 | 20, 22 | syl6eqbrr 4677 | . . . . . . 7 Nc 1c c Nc 1c |
24 | 23 | necon3bi 2557 | . . . . . 6 c Nc 1c Nc 1c |
25 | 24 | a1i 10 | . . . . 5 c We NC NC c Nc 1c Nc 1c |
26 | 19, 25 | jcad 519 | . . . 4 c We NC NC c Nc 1c Nc 1c c Nc 1c |
27 | 7 | simplbi 446 | . . . . . . . . . . 11 c We NC c Or NC |
28 | 8 | simplbi 446 | . . . . . . . . . . 11 c Or NC c Po NC |
29 | df-partial 5902 | . . . . . . . . . . . . . 14 Po Ref Trans Antisym | |
30 | 29 | breqi 4645 | . . . . . . . . . . . . 13 c Po NC c Ref Trans Antisym NC |
31 | brin 4693 | . . . . . . . . . . . . 13 c Ref Trans Antisym NC c Ref Trans NC c Antisym NC | |
32 | 30, 31 | bitri 240 | . . . . . . . . . . . 12 c Po NC c Ref Trans NC c Antisym NC |
33 | 32 | simprbi 450 | . . . . . . . . . . 11 c Po NC c Antisym NC |
34 | 27, 28, 33 | 3syl 18 | . . . . . . . . . 10 c We NC c Antisym NC |
35 | 34 | adantr 451 | . . . . . . . . 9 c We NC NC c Antisym NC |
36 | 35 | adantr 451 | . . . . . . . 8 c We NC NC Nc 1c c c Nc 1c c Antisym NC |
37 | 15 | a1i 10 | . . . . . . . 8 c We NC NC Nc 1c c c Nc 1c Nc 1c NC |
38 | simplr 731 | . . . . . . . 8 c We NC NC Nc 1c c c Nc 1c NC | |
39 | simprl 732 | . . . . . . . 8 c We NC NC Nc 1c c c Nc 1c Nc 1c c | |
40 | simprr 733 | . . . . . . . 8 c We NC NC Nc 1c c c Nc 1c c Nc 1c | |
41 | 36, 37, 38, 39, 40 | antid 5929 | . . . . . . 7 c We NC NC Nc 1c c c Nc 1c Nc 1c |
42 | 41 | expr 598 | . . . . . 6 c We NC NC Nc 1c c c Nc 1c Nc 1c |
43 | 42 | necon3ad 2552 | . . . . 5 c We NC NC Nc 1c c Nc 1c c Nc 1c |
44 | 43 | expimpd 586 | . . . 4 c We NC NC Nc 1c c Nc 1c c Nc 1c |
45 | 26, 44 | impbid 183 | . . 3 c We NC NC c Nc 1c Nc 1c c Nc 1c |
46 | brltc 6114 | . . 3 Nc 1c c Nc 1c c Nc 1c | |
47 | 45, 46 | syl6bbr 254 | . 2 c We NC NC c Nc 1c Nc 1c c |
48 | 3, 47 | bitrd 244 | 1 c We NC NC ↑c 0c NC Nc 1c c |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wo 357 wa 358 wceq 1642 wcel 1710 wne 2516 cin 3208 1cc1c 4134 0cc0c 4374 class class class wbr 4639 (class class class)co 5525 Trans ctrans 5888 Ref cref 5889 Antisym cantisym 5890 Po cpartial 5891 Connex cconnex 5892 Or cstrict 5893 Fr cfound 5894 We cwe 5895 NC cncs 6088 c clec 6089 c cltc 6090 Nc cnc 6091 ↑c cce 6096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt 5652 df-mpt2 5654 df-txp 5736 df-compose 5748 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-pw1fn 5766 df-trans 5899 df-antisym 5901 df-partial 5902 df-connex 5903 df-strict 5904 df-we 5906 df-sym 5908 df-er 5909 df-ec 5947 df-qs 5951 df-map 6001 df-en 6029 df-ncs 6098 df-lec 6099 df-ltc 6100 df-nc 6101 df-tc 6103 df-ce 6106 |
This theorem is referenced by: nchoicelem9 6297 nchoicelem19 6307 |
Copyright terms: Public domain | W3C validator |