New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ce0lenc1 | Unicode version |
Description: Cardinal exponentiation to zero is a cardinal iff the number is less than the size of cardinal one. (Contributed by SF, 18-Mar-2015.) |
Ref | Expression |
---|---|
ce0lenc1 | NC ↑c 0c NC c Nc 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ce0tb 6239 | . 2 NC ↑c 0c NC NC Tc | |
2 | elncs 6120 | . . . . . 6 NC Nc | |
3 | tceq 6159 | . . . . . . . . 9 Nc Tc Tc Nc | |
4 | vex 2863 | . . . . . . . . . 10 | |
5 | 4 | tcnc 6226 | . . . . . . . . 9 Tc Nc Nc 1 |
6 | 3, 5 | syl6eq 2401 | . . . . . . . 8 Nc Tc Nc 1 |
7 | pw1ss1c 4159 | . . . . . . . . 9 1 1c | |
8 | 4 | pw1ex 4304 | . . . . . . . . . 10 1 |
9 | 1cex 4143 | . . . . . . . . . 10 1c | |
10 | 8, 9 | nclec 6196 | . . . . . . . . 9 1 1c Nc 1 c Nc 1c |
11 | 7, 10 | ax-mp 5 | . . . . . . . 8 Nc 1 c Nc 1c |
12 | 6, 11 | syl6eqbr 4677 | . . . . . . 7 Nc Tc c Nc 1c |
13 | 12 | exlimiv 1634 | . . . . . 6 Nc Tc c Nc 1c |
14 | 2, 13 | sylbi 187 | . . . . 5 NC Tc c Nc 1c |
15 | breq1 4643 | . . . . 5 Tc c Nc 1c Tc c Nc 1c | |
16 | 14, 15 | syl5ibrcom 213 | . . . 4 NC Tc c Nc 1c |
17 | 16 | rexlimiv 2733 | . . 3 NC Tc c Nc 1c |
18 | 9 | lenc 6224 | . . . 4 NC c Nc 1c 1c |
19 | ncseqnc 6129 | . . . . . . 7 NC Nc | |
20 | 19 | biimpar 471 | . . . . . 6 NC Nc |
21 | 4 | sspw12 4337 | . . . . . . . 8 1c 1 |
22 | vex 2863 | . . . . . . . . . . . 12 | |
23 | 22 | ncelncsi 6122 | . . . . . . . . . . 11 Nc NC |
24 | 22 | tcnc 6226 | . . . . . . . . . . 11 Tc Nc Nc 1 |
25 | tceq 6159 | . . . . . . . . . . . . 13 Nc Tc Tc Nc | |
26 | 25 | eqeq1d 2361 | . . . . . . . . . . . 12 Nc Tc Nc 1 Tc Nc Nc 1 |
27 | 26 | rspcev 2956 | . . . . . . . . . . 11 Nc NC Tc Nc Nc 1 NC Tc Nc 1 |
28 | 23, 24, 27 | mp2an 653 | . . . . . . . . . 10 NC Tc Nc 1 |
29 | nceq 6109 | . . . . . . . . . . . . 13 1 Nc Nc 1 | |
30 | 29 | eqeq1d 2361 | . . . . . . . . . . . 12 1 Nc Tc Nc 1 Tc |
31 | eqcom 2355 | . . . . . . . . . . . 12 Nc 1 Tc Tc Nc 1 | |
32 | 30, 31 | syl6bb 252 | . . . . . . . . . . 11 1 Nc Tc Tc Nc 1 |
33 | 32 | rexbidv 2636 | . . . . . . . . . 10 1 NC Nc Tc NC Tc Nc 1 |
34 | 28, 33 | mpbiri 224 | . . . . . . . . 9 1 NC Nc Tc |
35 | 34 | exlimiv 1634 | . . . . . . . 8 1 NC Nc Tc |
36 | 21, 35 | sylbi 187 | . . . . . . 7 1c NC Nc Tc |
37 | eqeq1 2359 | . . . . . . . 8 Nc Tc Nc Tc | |
38 | 37 | rexbidv 2636 | . . . . . . 7 Nc NC Tc NC Nc Tc |
39 | 36, 38 | syl5ibr 212 | . . . . . 6 Nc 1c NC Tc |
40 | 20, 39 | syl 15 | . . . . 5 NC 1c NC Tc |
41 | 40 | rexlimdva 2739 | . . . 4 NC 1c NC Tc |
42 | 18, 41 | sylbid 206 | . . 3 NC c Nc 1c NC Tc |
43 | 17, 42 | impbid2 195 | . 2 NC NC Tc c Nc 1c |
44 | 1, 43 | bitrd 244 | 1 NC ↑c 0c NC c Nc 1c |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 wrex 2616 wss 3258 1cc1c 4135 1 cpw1 4136 0cc0c 4375 class class class wbr 4640 (class class class)co 5526 NC cncs 6089 c clec 6090 Nc cnc 6092 Tc ctc 6094 ↑c cce 6097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-compose 5749 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-lec 6100 df-nc 6102 df-tc 6104 df-ce 6107 |
This theorem is referenced by: nchoicelem8 6297 nchoicelem9 6298 |
Copyright terms: Public domain | W3C validator |