NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nchoice Unicode version

Theorem nchoice 6309
Description: Cardinal less than or equal does not well-order the cardinals. This is equivalent to saying that the axiom of choice from ZFC is false in NF. Theorem 7.5 of [Specker] p. 974. (Contributed by SF, 20-Mar-2015.)
Assertion
Ref Expression
nchoice <_c We NC

Proof of Theorem nchoice
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nchoicelem1 6290 . . . 4 Nn Tc 1c
2 nchoicelem2 6291 . . . 4 Nn Tc 2c
3 ioran 476 . . . 4 Tc 1c Tc 2c Tc 1c Tc 2c
41, 2, 3sylanbrc 645 . . 3 Nn Tc 1c Tc 2c
54nrex 2717 . 2 Nn Tc 1c Tc 2c
6 nchoicelem19 6308 . . 3 <_c We NC NC Spac Fin Tc
7 finnc 6244 . . . . . . . 8 Spac Fin Nc Spac Nn
87biimpi 186 . . . . . . 7 Spac Fin Nc Spac Nn
98ad2antrl 708 . . . . . 6 <_c We NC NC Spac Fin Tc Nc Spac Nn
10 simpll 730 . . . . . . . . 9 <_c We NC NC Spac Fin Tc <_c We NC
11 simplr 731 . . . . . . . . 9 <_c We NC NC Spac Fin Tc NC
12 simprl 732 . . . . . . . . 9 <_c We NC NC Spac Fin Tc Spac Fin
13 nchoicelem17 6306 . . . . . . . . 9 <_c We NC NC Spac Fin Spac Tc Fin Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c
1410, 11, 12, 13syl3anc 1182 . . . . . . . 8 <_c We NC NC Spac Fin Tc Spac Tc Fin Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c
1514simprd 449 . . . . . . 7 <_c We NC NC Spac Fin Tc Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c
16 simprr 733 . . . . . . . . . . 11 <_c We NC NC Spac Fin Tc Tc
1716fveq2d 5333 . . . . . . . . . 10 <_c We NC NC Spac Fin Tc Spac Tc Spac
1817nceqd 6111 . . . . . . . . 9 <_c We NC NC Spac Fin Tc Nc Spac Tc Nc Spac
1918eqeq1d 2361 . . . . . . . 8 <_c We NC NC Spac Fin Tc Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Nc Spac 1c
2018eqeq1d 2361 . . . . . . . 8 <_c We NC NC Spac Fin Tc Nc Spac Tc Tc Nc Spac 2c Nc Spac Tc Nc Spac 2c
2119, 20orbi12d 690 . . . . . . 7 <_c We NC NC Spac Fin Tc Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c Nc Spac Tc Nc Spac 1c Nc Spac Tc Nc Spac 2c
2215, 21mpbid 201 . . . . . 6 <_c We NC NC Spac Fin Tc Nc Spac Tc Nc Spac 1c Nc Spac Tc Nc Spac 2c
23 id 19 . . . . . . . . 9 Nc Spac Nc Spac
24 tceq 6159 . . . . . . . . . 10 Nc Spac Tc Tc Nc Spac
2524addceq1d 4390 . . . . . . . . 9 Nc Spac Tc 1c Tc Nc Spac 1c
2623, 25eqeq12d 2367 . . . . . . . 8 Nc Spac Tc 1c Nc Spac Tc Nc Spac 1c
2724addceq1d 4390 . . . . . . . . 9 Nc Spac Tc 2c Tc Nc Spac 2c
2823, 27eqeq12d 2367 . . . . . . . 8 Nc Spac Tc 2c Nc Spac Tc Nc Spac 2c
2926, 28orbi12d 690 . . . . . . 7 Nc Spac Tc 1c Tc 2c Nc Spac Tc Nc Spac 1c Nc Spac Tc Nc Spac 2c
3029rspcev 2956 . . . . . 6 Nc Spac Nn Nc Spac Tc Nc Spac 1c Nc Spac Tc Nc Spac 2c Nn Tc 1c Tc 2c
319, 22, 30syl2anc 642 . . . . 5 <_c We NC NC Spac Fin Tc Nn Tc 1c Tc 2c
3231ex 423 . . . 4 <_c We NC NC Spac Fin Tc Nn Tc 1c Tc 2c
3332rexlimdva 2739 . . 3 <_c We NC NC Spac Fin Tc Nn Tc 1c Tc 2c
346, 33mpd 14 . 2 <_c We NC Nn Tc 1c Tc 2c
355, 34mto 167 1 <_c We NC
Colors of variables: wff setvar class
Syntax hints:   wn 3   wo 357   wa 358   wceq 1642   wcel 1710  wrex 2616  1cc1c 4135   Nn cnnc 4374   cplc 4376   Fin cfin 4377   class class class wbr 4640  cfv 4782   We cwe 5896   NC cncs 6089   <_c clec 6090   Nc cnc 6092   Tc ctc 6094  2cc2c 6095   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-meredith 1406  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-csb 3138  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-tp 3744  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-cup 5743  df-disj 5745  df-addcfn 5747  df-compose 5749  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-ref 5901  df-antisym 5902  df-partial 5903  df-connex 5904  df-strict 5905  df-found 5906  df-we 5907  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-lec 6100  df-ltc 6101  df-nc 6102  df-tc 6104  df-2c 6105  df-3c 6106  df-ce 6107  df-tcfn 6108  df-spac 6275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator