New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nchoice | Unicode version |
Description: Cardinal less than or equal does not well-order the cardinals. This is equivalent to saying that the axiom of choice from ZFC is false in NF. Theorem 7.5 of [Specker] p. 974. (Contributed by SF, 20-Mar-2015.) |
Ref | Expression |
---|---|
nchoice | c We NC |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nchoicelem1 6290 | . . . 4 Nn Tc 1c | |
2 | nchoicelem2 6291 | . . . 4 Nn Tc 2c | |
3 | ioran 476 | . . . 4 Tc 1c Tc 2c Tc 1c Tc 2c | |
4 | 1, 2, 3 | sylanbrc 645 | . . 3 Nn Tc 1c Tc 2c |
5 | 4 | nrex 2717 | . 2 Nn Tc 1c Tc 2c |
6 | nchoicelem19 6308 | . . 3 c We NC NC Spac Fin Tc | |
7 | finnc 6244 | . . . . . . . 8 Spac Fin Nc Spac Nn | |
8 | 7 | biimpi 186 | . . . . . . 7 Spac Fin Nc Spac Nn |
9 | 8 | ad2antrl 708 | . . . . . 6 c We NC NC Spac Fin Tc Nc Spac Nn |
10 | simpll 730 | . . . . . . . . 9 c We NC NC Spac Fin Tc c We NC | |
11 | simplr 731 | . . . . . . . . 9 c We NC NC Spac Fin Tc NC | |
12 | simprl 732 | . . . . . . . . 9 c We NC NC Spac Fin Tc Spac Fin | |
13 | nchoicelem17 6306 | . . . . . . . . 9 c We NC NC Spac Fin Spac Tc Fin Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c | |
14 | 10, 11, 12, 13 | syl3anc 1182 | . . . . . . . 8 c We NC NC Spac Fin Tc Spac Tc Fin Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c |
15 | 14 | simprd 449 | . . . . . . 7 c We NC NC Spac Fin Tc Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c |
16 | simprr 733 | . . . . . . . . . . 11 c We NC NC Spac Fin Tc Tc | |
17 | 16 | fveq2d 5333 | . . . . . . . . . 10 c We NC NC Spac Fin Tc Spac Tc Spac |
18 | 17 | nceqd 6111 | . . . . . . . . 9 c We NC NC Spac Fin Tc Nc Spac Tc Nc Spac |
19 | 18 | eqeq1d 2361 | . . . . . . . 8 c We NC NC Spac Fin Tc Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Nc Spac 1c |
20 | 18 | eqeq1d 2361 | . . . . . . . 8 c We NC NC Spac Fin Tc Nc Spac Tc Tc Nc Spac 2c Nc Spac Tc Nc Spac 2c |
21 | 19, 20 | orbi12d 690 | . . . . . . 7 c We NC NC Spac Fin Tc Nc Spac Tc Tc Nc Spac 1c Nc Spac Tc Tc Nc Spac 2c Nc Spac Tc Nc Spac 1c Nc Spac Tc Nc Spac 2c |
22 | 15, 21 | mpbid 201 | . . . . . 6 c We NC NC Spac Fin Tc Nc Spac Tc Nc Spac 1c Nc Spac Tc Nc Spac 2c |
23 | id 19 | . . . . . . . . 9 Nc Spac Nc Spac | |
24 | tceq 6159 | . . . . . . . . . 10 Nc Spac Tc Tc Nc Spac | |
25 | 24 | addceq1d 4390 | . . . . . . . . 9 Nc Spac Tc 1c Tc Nc Spac 1c |
26 | 23, 25 | eqeq12d 2367 | . . . . . . . 8 Nc Spac Tc 1c Nc Spac Tc Nc Spac 1c |
27 | 24 | addceq1d 4390 | . . . . . . . . 9 Nc Spac Tc 2c Tc Nc Spac 2c |
28 | 23, 27 | eqeq12d 2367 | . . . . . . . 8 Nc Spac Tc 2c Nc Spac Tc Nc Spac 2c |
29 | 26, 28 | orbi12d 690 | . . . . . . 7 Nc Spac Tc 1c Tc 2c Nc Spac Tc Nc Spac 1c Nc Spac Tc Nc Spac 2c |
30 | 29 | rspcev 2956 | . . . . . 6 Nc Spac Nn Nc Spac Tc Nc Spac 1c Nc Spac Tc Nc Spac 2c Nn Tc 1c Tc 2c |
31 | 9, 22, 30 | syl2anc 642 | . . . . 5 c We NC NC Spac Fin Tc Nn Tc 1c Tc 2c |
32 | 31 | ex 423 | . . . 4 c We NC NC Spac Fin Tc Nn Tc 1c Tc 2c |
33 | 32 | rexlimdva 2739 | . . 3 c We NC NC Spac Fin Tc Nn Tc 1c Tc 2c |
34 | 6, 33 | mpd 14 | . 2 c We NC Nn Tc 1c Tc 2c |
35 | 5, 34 | mto 167 | 1 c We NC |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wo 357 wa 358 wceq 1642 wcel 1710 wrex 2616 1cc1c 4135 Nn cnnc 4374 cplc 4376 Fin cfin 4377 class class class wbr 4640 cfv 4782 We cwe 5896 NC cncs 6089 c clec 6090 Nc cnc 6092 Tc ctc 6094 2cc2c 6095 Spac cspac 6274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-meredith 1406 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-tp 3744 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-fix 5741 df-cup 5743 df-disj 5745 df-addcfn 5747 df-compose 5749 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-fullfun 5769 df-clos1 5874 df-trans 5900 df-ref 5901 df-antisym 5902 df-partial 5903 df-connex 5904 df-strict 5905 df-found 5906 df-we 5907 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-lec 6100 df-ltc 6101 df-nc 6102 df-tc 6104 df-2c 6105 df-3c 6106 df-ce 6107 df-tcfn 6108 df-spac 6275 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |