NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tfineq Unicode version

Theorem tfineq 4489
Description: Equality theorem for the finite T operator. (Contributed by SF, 24-Jan-2015.)
Assertion
Ref Expression
tfineq Tfin Tfin

Proof of Theorem tfineq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2359 . . 3
2 rexeq 2809 . . . . 5 1 1
32anbi2d 684 . . . 4 Nn 1 Nn 1
43iotabidv 4361 . . 3 Nn 1 Nn 1
51, 4ifbieq2d 3683 . 2 Nn 1 Nn 1
6 df-tfin 4444 . 2 Tfin Nn 1
7 df-tfin 4444 . 2 Tfin Nn 1
85, 6, 73eqtr4g 2410 1 Tfin Tfin
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   wceq 1642   wcel 1710  wrex 2616  c0 3551  cif 3663  1 cpw1 4136  cio 4338   Nn cnnc 4374   Tfin ctfin 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-if 3664  df-uni 3893  df-iota 4340  df-tfin 4444
This theorem is referenced by:  tfincl  4493  tfin11  4494  tfin1c  4500  tfinltfinlem1  4501  tfinltfin  4502  eventfin  4518  oddtfin  4519  sfintfin  4533  tfinnn  4535  vfinncvntnn  4549  vfinspsslem1  4551  vfinspss  4552  vfinspclt  4553
  Copyright terms: Public domain W3C validator