New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > tfineq | Unicode version |
Description: Equality theorem for the finite T operator. (Contributed by SF, 24-Jan-2015.) |
Ref | Expression |
---|---|
tfineq | Tfin Tfin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . . 3 | |
2 | rexeq 2808 | . . . . 5 1 1 | |
3 | 2 | anbi2d 684 | . . . 4 Nn 1 Nn 1 |
4 | 3 | iotabidv 4360 | . . 3 Nn 1 Nn 1 |
5 | 1, 4 | ifbieq2d 3682 | . 2 Nn 1 Nn 1 |
6 | df-tfin 4443 | . 2 Tfin Nn 1 | |
7 | df-tfin 4443 | . 2 Tfin Nn 1 | |
8 | 5, 6, 7 | 3eqtr4g 2410 | 1 Tfin Tfin |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wceq 1642 wcel 1710 wrex 2615 c0 3550 cif 3662 1 cpw1 4135 cio 4337 Nn cnnc 4373 Tfin ctfin 4435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-rab 2623 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-if 3663 df-uni 3892 df-iota 4339 df-tfin 4443 |
This theorem is referenced by: tfincl 4492 tfin11 4493 tfin1c 4499 tfinltfinlem1 4500 tfinltfin 4501 eventfin 4517 oddtfin 4518 sfintfin 4532 tfinnn 4534 vfinncvntnn 4548 vfinspsslem1 4550 vfinspss 4551 vfinspclt 4552 |
Copyright terms: Public domain | W3C validator |