NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tceq Unicode version

Theorem tceq 6159
Description: Equality theorem for cardinal T operator. (Contributed by SF, 2-Mar-2015.)
Assertion
Ref Expression
tceq Tc Tc

Proof of Theorem tceq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2809 . . . 4 Nc 1 Nc 1
21anbi2d 684 . . 3 NC Nc 1 NC Nc 1
32iotabidv 4361 . 2 NC Nc 1 NC Nc 1
4 df-tc 6104 . 2 Tc NC Nc 1
5 df-tc 6104 . 2 Tc NC Nc 1
63, 4, 53eqtr4g 2410 1 Tc Tc
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   wceq 1642   wcel 1710  wrex 2616  1 cpw1 4136  cio 4338   NC cncs 6089   Nc cnc 6092   Tc ctc 6094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-uni 3893  df-iota 4340  df-tc 6104
This theorem is referenced by:  tcdi  6165  tc2c  6167  tc11  6229  taddc  6230  tlecg  6231  letc  6232  ce0t  6233  ce2le  6234  cet  6235  tce2  6237  te0c  6238  ce0lenc1  6240  tlenc1c  6241  brtcfn  6247  nmembers1lem1  6269  nmembers1  6272  nchoicelem1  6290  nchoicelem2  6291  nchoicelem12  6301  nchoicelem16  6305  nchoicelem17  6306  nchoicelem19  6308  nchoice  6309
  Copyright terms: Public domain W3C validator