New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sfin111 | Unicode version |
Description: The finite smaller relationship is one-to-one in its first argument. Theorem X.1.48 of [Rosser] p. 533. (Contributed by SF, 29-Jan-2015.) |
Ref | Expression |
---|---|
sfin111 | Sfin Sfin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sfin 4446 | . . . . . . 7 Sfin Nn Nn 1 | |
2 | 1 | simp2bi 971 | . . . . . 6 Sfin Nn |
3 | 2 | adantl 452 | . . . . 5 Sfin Sfin Nn |
4 | ltfinirr 4457 | . . . . 5 Nn fin | |
5 | 3, 4 | syl 15 | . . . 4 Sfin Sfin fin |
6 | sfinltfin 4535 | . . . 4 Sfin Sfin fin fin | |
7 | 5, 6 | mtand 640 | . . 3 Sfin Sfin fin |
8 | sfinltfin 4535 | . . . . . 6 Sfin Sfin fin fin | |
9 | 8 | ex 423 | . . . . 5 Sfin Sfin fin fin |
10 | 9 | ancoms 439 | . . . 4 Sfin Sfin fin fin |
11 | 5, 10 | mtod 168 | . . 3 Sfin Sfin fin |
12 | ioran 476 | . . 3 fin fin fin fin | |
13 | 7, 11, 12 | sylanbrc 645 | . 2 Sfin Sfin fin fin |
14 | df-sfin 4446 | . . . . . . 7 Sfin Nn Nn 1 | |
15 | 14 | simp1bi 970 | . . . . . 6 Sfin Nn |
16 | 15 | adantr 451 | . . . . 5 Sfin Sfin Nn |
17 | 1 | simp1bi 970 | . . . . . 6 Sfin Nn |
18 | 17 | adantl 452 | . . . . 5 Sfin Sfin Nn |
19 | ne0i 3556 | . . . . . . . . . 10 1 | |
20 | 19 | adantr 451 | . . . . . . . . 9 1 |
21 | 20 | exlimiv 1634 | . . . . . . . 8 1 |
22 | 21 | 3ad2ant3 978 | . . . . . . 7 Nn Nn 1 |
23 | 14, 22 | sylbi 187 | . . . . . 6 Sfin |
24 | 23 | adantr 451 | . . . . 5 Sfin Sfin |
25 | ltfintri 4466 | . . . . 5 Nn Nn fin fin | |
26 | 16, 18, 24, 25 | syl3anc 1182 | . . . 4 Sfin Sfin fin fin |
27 | df-3or 935 | . . . 4 fin fin fin fin | |
28 | 26, 27 | sylib 188 | . . 3 Sfin Sfin fin fin |
29 | or32 513 | . . 3 fin fin fin fin | |
30 | 28, 29 | sylib 188 | . 2 Sfin Sfin fin fin |
31 | orel1 371 | . 2 fin fin fin fin | |
32 | 13, 30, 31 | sylc 56 | 1 Sfin Sfin |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wo 357 wa 358 w3o 933 w3a 934 wex 1541 wceq 1642 wcel 1710 wne 2516 c0 3550 cpw 3722 copk 4057 1 cpw1 4135 Nn cnnc 4373 fin cltfin 4433 Sfin wsfin 4438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-tfin 4443 df-sfin 4446 |
This theorem is referenced by: vfinspss 4551 |
Copyright terms: Public domain | W3C validator |