New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssrdv | GIF version |
Description: Deduction rule based on subclass definition. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
ssrdv.1 | ⊢ (φ → (x ∈ A → x ∈ B)) |
Ref | Expression |
---|---|
ssrdv | ⊢ (φ → A ⊆ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrdv.1 | . . 3 ⊢ (φ → (x ∈ A → x ∈ B)) | |
2 | 1 | alrimiv 1631 | . 2 ⊢ (φ → ∀x(x ∈ A → x ∈ B)) |
3 | dfss2 3262 | . 2 ⊢ (A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)) | |
4 | 2, 3 | sylibr 203 | 1 ⊢ (φ → A ⊆ B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 1710 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: sscon 3400 ssdif 3401 unss1 3432 ssrin 3480 eq0rdv 3585 uniss 3912 intss1 3941 intmin 3946 intssuni 3948 iunss1 3980 iinss1 3981 ss2iun 3984 ssiun 4008 ssiun2 4009 iinss 4017 iinss2 4018 sspwb 4118 pwadjoin 4119 phi11lem1 4595 phi011lem1 4598 ssrel 4844 dmss 4906 dmcosseq 4973 ssrnres 5059 fun11iun 5305 chfnrn 5399 ffnfv 5427 enadjlem1 6059 enmap2lem5 6067 enmap1lem5 6073 enprmaplem5 6080 enprmaplem6 6081 |
Copyright terms: Public domain | W3C validator |