NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tcdi Unicode version

Theorem tcdi 6165
Description: T raising distributes over addition. (Contributed by SF, 2-Mar-2015.)
Assertion
Ref Expression
tcdi NC NC Tc Tc Tc

Proof of Theorem tcdi
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eeanv 1913 . . 3 Nc Nc Nc Nc
2 vex 2863 . . . . . . . 8
3 0ex 4111 . . . . . . . . 9
43complex 4105 . . . . . . . 8
52, 4xpsnen 6050 . . . . . . 7
6 snex 4112 . . . . . . . . 9
72, 6xpex 5116 . . . . . . . 8
87eqnc 6128 . . . . . . 7 Nc Nc
95, 8mpbir 200 . . . . . 6 Nc Nc
109eqeq2i 2363 . . . . 5 Nc Nc
11 vex 2863 . . . . . . . 8
1211, 3xpsnen 6050 . . . . . . 7
13 snex 4112 . . . . . . . . 9
1411, 13xpex 5116 . . . . . . . 8
1514eqnc 6128 . . . . . . 7 Nc Nc
1612, 15mpbir 200 . . . . . 6 Nc Nc
1716eqeq2i 2363 . . . . 5 Nc Nc
1810, 17anbi12i 678 . . . 4 Nc Nc Nc Nc
19182exbii 1583 . . 3 Nc Nc Nc Nc
20 elncs 6120 . . . 4 NC Nc
21 elncs 6120 . . . 4 NC Nc
2220, 21anbi12i 678 . . 3 NC NC Nc Nc
231, 19, 223bitr4ri 269 . 2 NC NC Nc Nc
247ncelncsi 6122 . . . . . . 7 Nc NC
2514ncelncsi 6122 . . . . . . 7 Nc NC
26 ncaddccl 6145 . . . . . . 7 Nc NC Nc NC Nc Nc NC
2724, 25, 26mp2an 653 . . . . . 6 Nc Nc NC
28 tccl 6161 . . . . . 6 Nc Nc NC Tc Nc Nc NC
2927, 28ax-mp 5 . . . . 5 Tc Nc Nc NC
30 tccl 6161 . . . . . . 7 Nc NC Tc Nc NC
3124, 30ax-mp 5 . . . . . 6 Tc Nc NC
32 tccl 6161 . . . . . . 7 Nc NC Tc Nc NC
3325, 32ax-mp 5 . . . . . 6 Tc Nc NC
34 ncaddccl 6145 . . . . . 6 Tc Nc NC Tc Nc NC Tc Nc Tc Nc NC
3531, 33, 34mp2an 653 . . . . 5 Tc Nc Tc Nc NC
367ncid 6124 . . . . . . 7 Nc
3714ncid 6124 . . . . . . 7 Nc
38 necompl 3545 . . . . . . . 8
394, 38xpnedisj 5514 . . . . . . 7
40 eladdci 4400 . . . . . . 7 Nc Nc Nc Nc
4136, 37, 39, 40mp3an 1277 . . . . . 6 Nc Nc
42 pw1eltc 6163 . . . . . 6 Nc Nc NC Nc Nc 1 Tc Nc Nc
4327, 41, 42mp2an 653 . . . . 5 1 Tc Nc Nc
44 pw1un 4164 . . . . . 6 1 1 1
45 pw1eltc 6163 . . . . . . . 8 Nc NC Nc 1 Tc Nc
4624, 36, 45mp2an 653 . . . . . . 7 1 Tc Nc
47 pw1eltc 6163 . . . . . . . 8 Nc NC Nc 1 Tc Nc
4825, 37, 47mp2an 653 . . . . . . 7 1 Tc Nc
49 pw1eq 4144 . . . . . . . . 9 1 1
5039, 49ax-mp 5 . . . . . . . 8 1 1
51 pw1in 4165 . . . . . . . 8 1 1 1
52 pw10 4162 . . . . . . . 8 1
5350, 51, 523eqtr3i 2381 . . . . . . 7 1 1
54 eladdci 4400 . . . . . . 7 1 Tc Nc 1 Tc Nc 1 1 1 1 Tc Nc Tc Nc
5546, 48, 53, 54mp3an 1277 . . . . . 6 1 1 Tc Nc Tc Nc
5644, 55eqeltri 2423 . . . . 5 1 Tc Nc Tc Nc
57 nceleq 6150 . . . . 5 Tc Nc Nc NC Tc Nc Tc Nc NC 1 Tc Nc Nc 1 Tc Nc Tc Nc Tc Nc Nc Tc Nc Tc Nc
5829, 35, 43, 56, 57mp4an 654 . . . 4 Tc Nc Nc Tc Nc Tc Nc
59 addceq12 4386 . . . . 5 Nc Nc Nc Nc
60 tceq 6159 . . . . 5 Nc Nc Tc Tc Nc Nc
6159, 60syl 15 . . . 4 Nc Nc Tc Tc Nc Nc
62 tceq 6159 . . . . . 6 Nc Tc Tc Nc
6362adantr 451 . . . . 5 Nc Nc Tc Tc Nc
64 tceq 6159 . . . . . 6 Nc Tc Tc Nc
6564adantl 452 . . . . 5 Nc Nc Tc Tc Nc
6663, 65addceq12d 4392 . . . 4 Nc Nc Tc Tc Tc Nc Tc Nc
6758, 61, 663eqtr4a 2411 . . 3 Nc Nc Tc Tc Tc
6867exlimivv 1635 . 2 Nc Nc Tc Tc Tc
6923, 68sylbi 187 1 NC NC Tc Tc Tc
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358  wex 1541   wceq 1642   wcel 1710   ∼ ccompl 3206   cun 3208   cin 3209  c0 3551  csn 3738  1 cpw1 4136   cplc 4376   class class class wbr 4640   cxp 4771   cen 6029   NC cncs 6089   Nc cnc 6092   Tc ctc 6094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-nc 6102  df-tc 6104
This theorem is referenced by:  tc2c  6167  tlecg  6231  nmembers1  6272  nchoicelem1  6290  nchoicelem2  6291  nchoicelem17  6306
  Copyright terms: Public domain W3C validator