New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opksnelsik | GIF version |
Description: Membership of an ordered pair of singletons in a Kuratowski singleton image. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
opksnelsik.1 | ⊢ A ∈ V |
opksnelsik.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
opksnelsik | ⊢ (⟪{A}, {B}⟫ ∈ SIk C ↔ ⟪A, B⟫ ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4112 | . . 3 ⊢ {A} ∈ V | |
2 | snex 4112 | . . 3 ⊢ {B} ∈ V | |
3 | opkelsikg 4265 | . . 3 ⊢ (({A} ∈ V ∧ {B} ∈ V) → (⟪{A}, {B}⟫ ∈ SIk C ↔ ∃x∃y({A} = {x} ∧ {B} = {y} ∧ ⟪x, y⟫ ∈ C))) | |
4 | 1, 2, 3 | mp2an 653 | . 2 ⊢ (⟪{A}, {B}⟫ ∈ SIk C ↔ ∃x∃y({A} = {x} ∧ {B} = {y} ∧ ⟪x, y⟫ ∈ C)) |
5 | eqcom 2355 | . . . . . 6 ⊢ ({A} = {x} ↔ {x} = {A}) | |
6 | vex 2863 | . . . . . . 7 ⊢ x ∈ V | |
7 | 6 | sneqb 3877 | . . . . . 6 ⊢ ({x} = {A} ↔ x = A) |
8 | 5, 7 | bitri 240 | . . . . 5 ⊢ ({A} = {x} ↔ x = A) |
9 | eqcom 2355 | . . . . . 6 ⊢ ({B} = {y} ↔ {y} = {B}) | |
10 | vex 2863 | . . . . . . 7 ⊢ y ∈ V | |
11 | 10 | sneqb 3877 | . . . . . 6 ⊢ ({y} = {B} ↔ y = B) |
12 | 9, 11 | bitri 240 | . . . . 5 ⊢ ({B} = {y} ↔ y = B) |
13 | biid 227 | . . . . 5 ⊢ (⟪x, y⟫ ∈ C ↔ ⟪x, y⟫ ∈ C) | |
14 | 8, 12, 13 | 3anbi123i 1140 | . . . 4 ⊢ (({A} = {x} ∧ {B} = {y} ∧ ⟪x, y⟫ ∈ C) ↔ (x = A ∧ y = B ∧ ⟪x, y⟫ ∈ C)) |
15 | 14 | 2exbii 1583 | . . 3 ⊢ (∃x∃y({A} = {x} ∧ {B} = {y} ∧ ⟪x, y⟫ ∈ C) ↔ ∃x∃y(x = A ∧ y = B ∧ ⟪x, y⟫ ∈ C)) |
16 | opksnelsik.1 | . . . 4 ⊢ A ∈ V | |
17 | opksnelsik.2 | . . . 4 ⊢ B ∈ V | |
18 | opkeq1 4060 | . . . . 5 ⊢ (x = A → ⟪x, y⟫ = ⟪A, y⟫) | |
19 | 18 | eleq1d 2419 | . . . 4 ⊢ (x = A → (⟪x, y⟫ ∈ C ↔ ⟪A, y⟫ ∈ C)) |
20 | opkeq2 4061 | . . . . 5 ⊢ (y = B → ⟪A, y⟫ = ⟪A, B⟫) | |
21 | 20 | eleq1d 2419 | . . . 4 ⊢ (y = B → (⟪A, y⟫ ∈ C ↔ ⟪A, B⟫ ∈ C)) |
22 | 16, 17, 19, 21 | ceqsex2v 2897 | . . 3 ⊢ (∃x∃y(x = A ∧ y = B ∧ ⟪x, y⟫ ∈ C) ↔ ⟪A, B⟫ ∈ C) |
23 | 15, 22 | bitri 240 | . 2 ⊢ (∃x∃y({A} = {x} ∧ {B} = {y} ∧ ⟪x, y⟫ ∈ C) ↔ ⟪A, B⟫ ∈ C) |
24 | 4, 23 | bitri 240 | 1 ⊢ (⟪{A}, {B}⟫ ∈ SIk C ↔ ⟪A, B⟫ ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {csn 3738 ⟪copk 4058 SIk csik 4182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-sik 4193 |
This theorem is referenced by: opkelimagekg 4272 sikexg 4297 dfimak2 4299 dfaddc2 4382 dfnnc2 4396 nnsucelrlem1 4425 ltfinex 4465 eqpwrelk 4479 eqpw1relk 4480 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelk 4525 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 setconslem2 4733 setconslem3 4734 setconslem7 4738 dfswap2 4742 |
Copyright terms: Public domain | W3C validator |