New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbnest1g | GIF version |
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
csbnest1g | ⊢ (A ∈ V → [A / x][B / x]C = [[A / x]B / x]C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]C | |
2 | 1 | ax-gen 1546 | . . 3 ⊢ ∀yℲx[y / x]C |
3 | csbnestgf 3185 | . . 3 ⊢ ((A ∈ V ∧ ∀yℲx[y / x]C) → [A / x][B / y][y / x]C = [[A / x]B / y][y / x]C) | |
4 | 2, 3 | mpan2 652 | . 2 ⊢ (A ∈ V → [A / x][B / y][y / x]C = [[A / x]B / y][y / x]C) |
5 | csbco 3146 | . . 3 ⊢ [B / y][y / x]C = [B / x]C | |
6 | 5 | csbeq2i 3163 | . 2 ⊢ [A / x][B / y][y / x]C = [A / x][B / x]C |
7 | csbco 3146 | . 2 ⊢ [[A / x]B / y][y / x]C = [[A / x]B / x]C | |
8 | 4, 6, 7 | 3eqtr3g 2408 | 1 ⊢ (A ∈ V → [A / x][B / x]C = [[A / x]B / x]C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: csbnest1gOLD 3190 csbidmg 3191 |
Copyright terms: Public domain | W3C validator |