NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  adj11 GIF version

Theorem adj11 3890
Description: Adjoining a new element is one-to-one. (Contributed by SF, 29-Jan-2015.)
Assertion
Ref Expression
adj11 ((¬ C A ¬ C B) → ((A ∪ {C}) = (B ∪ {C}) ↔ A = B))

Proof of Theorem adj11
StepHypRef Expression
1 difeq1 3247 . . . 4 ((A ∪ {C}) = (B ∪ {C}) → ((A ∪ {C}) {C}) = ((B ∪ {C}) {C}))
2 difun2 3630 . . . 4 ((A ∪ {C}) {C}) = (A {C})
3 difun2 3630 . . . 4 ((B ∪ {C}) {C}) = (B {C})
41, 2, 33eqtr3g 2408 . . 3 ((A ∪ {C}) = (B ∪ {C}) → (A {C}) = (B {C}))
5 difsn 3846 . . . 4 C A → (A {C}) = A)
6 difsn 3846 . . . 4 C B → (B {C}) = B)
75, 6eqeqan12d 2368 . . 3 ((¬ C A ¬ C B) → ((A {C}) = (B {C}) ↔ A = B))
84, 7syl5ib 210 . 2 ((¬ C A ¬ C B) → ((A ∪ {C}) = (B ∪ {C}) → A = B))
9 uneq1 3412 . 2 (A = B → (A ∪ {C}) = (B ∪ {C}))
108, 9impbid1 194 1 ((¬ C A ¬ C B) → ((A ∪ {C}) = (B ∪ {C}) ↔ A = B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710   cdif 3207  cun 3208  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742
This theorem is referenced by:  nnadjoin  4521
  Copyright terms: Public domain W3C validator