Step | Hyp | Ref
| Expression |
1 | | eqid 2353 |
. . . 4
⊢ (A ∪ B) =
(A ∪ B) |
2 | | ineq1 3451 |
. . . . . . . 8
⊢ (a = A →
(a ∩ b) = (A ∩
b)) |
3 | 2 | eqeq1d 2361 |
. . . . . . 7
⊢ (a = A →
((a ∩ b) = ∅ ↔
(A ∩ b) = ∅)) |
4 | | uneq1 3412 |
. . . . . . . 8
⊢ (a = A →
(a ∪ b) = (A ∪
b)) |
5 | 4 | eqeq2d 2364 |
. . . . . . 7
⊢ (a = A →
((A ∪ B) = (a ∪
b) ↔ (A ∪ B) =
(A ∪ b))) |
6 | 3, 5 | anbi12d 691 |
. . . . . 6
⊢ (a = A →
(((a ∩ b) = ∅ ∧ (A ∪
B) = (a
∪ b)) ↔ ((A ∩ b) =
∅ ∧
(A ∪ B) = (A ∪
b)))) |
7 | | ineq2 3452 |
. . . . . . . 8
⊢ (b = B →
(A ∩ b) = (A ∩
B)) |
8 | 7 | eqeq1d 2361 |
. . . . . . 7
⊢ (b = B →
((A ∩ b) = ∅ ↔
(A ∩ B) = ∅)) |
9 | | uneq2 3413 |
. . . . . . . 8
⊢ (b = B →
(A ∪ b) = (A ∪
B)) |
10 | 9 | eqeq2d 2364 |
. . . . . . 7
⊢ (b = B →
((A ∪ B) = (A ∪
b) ↔ (A ∪ B) =
(A ∪ B))) |
11 | 8, 10 | anbi12d 691 |
. . . . . 6
⊢ (b = B →
(((A ∩ b) = ∅ ∧ (A ∪
B) = (A
∪ b)) ↔ ((A ∩ B) =
∅ ∧
(A ∪ B) = (A ∪
B)))) |
12 | 6, 11 | rspc2ev 2964 |
. . . . 5
⊢ ((A ∈ M ∧ B ∈ N ∧ ((A ∩ B) =
∅ ∧
(A ∪ B) = (A ∪
B))) → ∃a ∈ M ∃b ∈ N ((a ∩ b) =
∅ ∧
(A ∪ B) = (a ∪
b))) |
13 | 12 | 3expa 1151 |
. . . 4
⊢ (((A ∈ M ∧ B ∈ N) ∧ ((A ∩ B) =
∅ ∧
(A ∪ B) = (A ∪
B))) → ∃a ∈ M ∃b ∈ N ((a ∩ b) =
∅ ∧
(A ∪ B) = (a ∪
b))) |
14 | 1, 13 | mpanr2 665 |
. . 3
⊢ (((A ∈ M ∧ B ∈ N) ∧ (A ∩ B) =
∅) → ∃a ∈ M ∃b ∈ N ((a ∩ b) =
∅ ∧
(A ∪ B) = (a ∪
b))) |
15 | 14 | 3impa 1146 |
. 2
⊢ ((A ∈ M ∧ B ∈ N ∧ (A ∩ B) =
∅) → ∃a ∈ M ∃b ∈ N ((a ∩ b) =
∅ ∧
(A ∪ B) = (a ∪
b))) |
16 | | eladdc 4399 |
. 2
⊢ ((A ∪ B) ∈ (M
+c N) ↔ ∃a ∈ M ∃b ∈ N ((a ∩ b) =
∅ ∧
(A ∪ B) = (a ∪
b))) |
17 | 15, 16 | sylibr 203 |
1
⊢ ((A ∈ M ∧ B ∈ N ∧ (A ∩ B) =
∅) → (A ∪ B) ∈ (M
+c N)) |