NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nchoicelem3 GIF version

Theorem nchoicelem3 6292
Description: Lemma for nchoice 6309. Compute the value of Spac when the argument is not exponentiable. Theorem 6.2 of [Specker] p. 973. (Contributed by SF, 13-Mar-2015.)
Assertion
Ref Expression
nchoicelem3 ((M NC ¬ (Mc 0c) NC ) → ( SpacM) = {M})

Proof of Theorem nchoicelem3
Dummy variables p x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spacval 6283 . . 3 (M NC → ( SpacM) = Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}))
21adantr 451 . 2 ((M NC ¬ (Mc 0c) NC ) → ( SpacM) = Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}))
3 elimasn 5020 . . . . . . . 8 (p ({x, y (x NC y NC y = (2cc x))} “ {M}) ↔ M, p {x, y (x NC y NC y = (2cc x))})
4 df-br 4641 . . . . . . . 8 (M{x, y (x NC y NC y = (2cc x))}pM, p {x, y (x NC y NC y = (2cc x))})
53, 4bitr4i 243 . . . . . . 7 (p ({x, y (x NC y NC y = (2cc x))} “ {M}) ↔ M{x, y (x NC y NC y = (2cc x))}p)
6 vex 2863 . . . . . . . . 9 p V
7 eleq1 2413 . . . . . . . . . . 11 (x = M → (x NCM NC ))
8 oveq2 5532 . . . . . . . . . . . 12 (x = M → (2cc x) = (2cc M))
98eqeq2d 2364 . . . . . . . . . . 11 (x = M → (y = (2cc x) ↔ y = (2cc M)))
107, 93anbi13d 1254 . . . . . . . . . 10 (x = M → ((x NC y NC y = (2cc x)) ↔ (M NC y NC y = (2cc M))))
11 eleq1 2413 . . . . . . . . . . 11 (y = p → (y NCp NC ))
12 eqeq1 2359 . . . . . . . . . . 11 (y = p → (y = (2cc M) ↔ p = (2cc M)))
1311, 123anbi23d 1255 . . . . . . . . . 10 (y = p → ((M NC y NC y = (2cc M)) ↔ (M NC p NC p = (2cc M))))
14 eqid 2353 . . . . . . . . . 10 {x, y (x NC y NC y = (2cc x))} = {x, y (x NC y NC y = (2cc x))}
1510, 13, 14brabg 4707 . . . . . . . . 9 ((M NC p V) → (M{x, y (x NC y NC y = (2cc x))}p ↔ (M NC p NC p = (2cc M))))
166, 15mpan2 652 . . . . . . . 8 (M NC → (M{x, y (x NC y NC y = (2cc x))}p ↔ (M NC p NC p = (2cc M))))
17 eleq1 2413 . . . . . . . . . . 11 (p = (2cc M) → (p NC ↔ (2cc M) NC ))
1817biimpac 472 . . . . . . . . . 10 ((p NC p = (2cc M)) → (2cc M) NC )
19 2nc 6169 . . . . . . . . . . 11 2c NC
20 ceclr 6188 . . . . . . . . . . . 12 ((2c NC M NC (2cc M) NC ) → ((2cc 0c) NC (Mc 0c) NC ))
2120simprd 449 . . . . . . . . . . 11 ((2c NC M NC (2cc M) NC ) → (Mc 0c) NC )
2219, 21mp3an1 1264 . . . . . . . . . 10 ((M NC (2cc M) NC ) → (Mc 0c) NC )
2318, 22sylan2 460 . . . . . . . . 9 ((M NC (p NC p = (2cc M))) → (Mc 0c) NC )
24233impb 1147 . . . . . . . 8 ((M NC p NC p = (2cc M)) → (Mc 0c) NC )
2516, 24syl6bi 219 . . . . . . 7 (M NC → (M{x, y (x NC y NC y = (2cc x))}p → (Mc 0c) NC ))
265, 25syl5bi 208 . . . . . 6 (M NC → (p ({x, y (x NC y NC y = (2cc x))} “ {M}) → (Mc 0c) NC ))
2726con3d 125 . . . . 5 (M NC → (¬ (Mc 0c) NC → ¬ p ({x, y (x NC y NC y = (2cc x))} “ {M})))
2827imp 418 . . . 4 ((M NC ¬ (Mc 0c) NC ) → ¬ p ({x, y (x NC y NC y = (2cc x))} “ {M}))
2928eq0rdv 3586 . . 3 ((M NC ¬ (Mc 0c) NC ) → ({x, y (x NC y NC y = (2cc x))} “ {M}) = )
30 snex 4112 . . . 4 {M} V
31 spacvallem1 6282 . . . 4 {x, y (x NC y NC y = (2cc x))} V
32 eqid 2353 . . . 4 Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}) = Clos1 ({M}, {x, y (x NC y NC y = (2cc x))})
3330, 31, 32clos1nrel 5887 . . 3 (({x, y (x NC y NC y = (2cc x))} “ {M}) = Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}) = {M})
3429, 33syl 15 . 2 ((M NC ¬ (Mc 0c) NC ) → Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}) = {M})
352, 34eqtrd 2385 1 ((M NC ¬ (Mc 0c) NC ) → ( SpacM) = {M})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358   w3a 934   = wceq 1642   wcel 1710  Vcvv 2860  c0 3551  {csn 3738  0cc0c 4375  cop 4562  {copab 4623   class class class wbr 4640  cima 4723  cfv 4782  (class class class)co 5526   Clos1 cclos1 5873   NC cncs 6089  2cc2c 6095  c cce 6097   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-compose 5749  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-2c 6105  df-ce 6107  df-spac 6275
This theorem is referenced by:  nchoicelem9  6298  nchoicelem12  6301  nchoicelem15  6304  nchoicelem17  6306  nchoicelem19  6308
  Copyright terms: Public domain W3C validator