New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rspc2ev | GIF version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (x = A → (φ ↔ χ)) |
rspc2v.2 | ⊢ (y = B → (χ ↔ ψ)) |
Ref | Expression |
---|---|
rspc2ev | ⊢ ((A ∈ C ∧ B ∈ D ∧ ψ) → ∃x ∈ C ∃y ∈ D φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 ⊢ (y = B → (χ ↔ ψ)) | |
2 | 1 | rspcev 2956 | . . . 4 ⊢ ((B ∈ D ∧ ψ) → ∃y ∈ D χ) |
3 | 2 | anim2i 552 | . . 3 ⊢ ((A ∈ C ∧ (B ∈ D ∧ ψ)) → (A ∈ C ∧ ∃y ∈ D χ)) |
4 | 3 | 3impb 1147 | . 2 ⊢ ((A ∈ C ∧ B ∈ D ∧ ψ) → (A ∈ C ∧ ∃y ∈ D χ)) |
5 | rspc2v.1 | . . . 4 ⊢ (x = A → (φ ↔ χ)) | |
6 | 5 | rexbidv 2636 | . . 3 ⊢ (x = A → (∃y ∈ D φ ↔ ∃y ∈ D χ)) |
7 | 6 | rspcev 2956 | . 2 ⊢ ((A ∈ C ∧ ∃y ∈ D χ) → ∃x ∈ C ∃y ∈ D φ) |
8 | 4, 7 | syl 15 | 1 ⊢ ((A ∈ C ∧ B ∈ D ∧ ψ) → ∃x ∈ C ∃y ∈ D φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 |
This theorem is referenced by: rspc3ev 2966 eladdci 4400 rspceov 5557 nclec 6196 ltcpw1pwg 6203 nc0le1 6217 nclenc 6223 ce2le 6234 tlenc1c 6241 |
Copyright terms: Public domain | W3C validator |