NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rspc2ev GIF version

Theorem rspc2ev 2964
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.)
Hypotheses
Ref Expression
rspc2v.1 (x = A → (φχ))
rspc2v.2 (y = B → (χψ))
Assertion
Ref Expression
rspc2ev ((A C B D ψ) → x C y D φ)
Distinct variable groups:   x,y,A   y,B   x,C   x,D,y   χ,x   ψ,y
Allowed substitution hints:   φ(x,y)   ψ(x)   χ(y)   B(x)   C(y)

Proof of Theorem rspc2ev
StepHypRef Expression
1 rspc2v.2 . . . . 5 (y = B → (χψ))
21rspcev 2956 . . . 4 ((B D ψ) → y D χ)
32anim2i 552 . . 3 ((A C (B D ψ)) → (A C y D χ))
433impb 1147 . 2 ((A C B D ψ) → (A C y D χ))
5 rspc2v.1 . . . 4 (x = A → (φχ))
65rexbidv 2636 . . 3 (x = A → (y D φy D χ))
76rspcev 2956 . 2 ((A C y D χ) → x C y D φ)
84, 7syl 15 1 ((A C B D ψ) → x C y D φ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934   = wceq 1642   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862
This theorem is referenced by:  rspc3ev  2966  eladdci  4400  rspceov  5557  nclec  6196  ltcpw1pwg  6203  nc0le1  6217  nclenc  6223  ce2le  6234  tlenc1c  6241
  Copyright terms: Public domain W3C validator