New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3adant3 | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
3adant.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
3adant3 | ⊢ ((φ ∧ ψ ∧ θ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 952 | . 2 ⊢ ((φ ∧ ψ ∧ θ) → (φ ∧ ψ)) | |
2 | 3adant.1 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
3 | 1, 2 | syl 15 | 1 ⊢ ((φ ∧ ψ ∧ θ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: vtoclgft 2906 eqeu 3008 sikss1c1c 4268 ins2kss 4280 ins3kss 4281 leltfintr 4459 ltfintr 4460 lefinlteq 4464 ltfintri 4467 ncfineleq 4478 tfindi 4497 tfinltfin 4502 sfintfin 4533 tfinnn 4535 spfinsfincl 4540 addccan2 4560 brsi 4762 fnco 5192 resdif 5307 fnimapr 5375 f1ocnvfvb 5480 f1oiso2 5501 fununiq 5518 ovig 5598 ov2ag 5599 ov6g 5601 ovg 5602 ovmpt2x 5713 elmapg 6013 elpmg 6014 ceclr 6188 addlec 6209 lectr 6212 leaddc1 6215 nclenn 6250 addcdir 6252 lemuc1 6254 ncslemuc 6256 lecadd2 6267 spaccl 6287 |
Copyright terms: Public domain | W3C validator |