New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax11inda2 | GIF version |
Description: Induction step for constructing a substitution instance of ax-11o 2141 without using ax-11o 2141. Quantification case. When z and y are distinct, this theorem avoids the dummy variables needed by the more general ax11inda 2200. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax11inda2.1 | ⊢ (¬ ∀x x = y → (x = y → (φ → ∀x(x = y → φ)))) |
Ref | Expression |
---|---|
ax11inda2 | ⊢ (¬ ∀x x = y → (x = y → (∀zφ → ∀x(x = y → ∀zφ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . . . 5 ⊢ (∀zφ → (x = y → ∀zφ)) | |
2 | a16g-o 2186 | . . . . 5 ⊢ (∀y y = z → ((x = y → ∀zφ) → ∀x(x = y → ∀zφ))) | |
3 | 1, 2 | syl5 28 | . . . 4 ⊢ (∀y y = z → (∀zφ → ∀x(x = y → ∀zφ))) |
4 | 3 | a1d 22 | . . 3 ⊢ (∀y y = z → (x = y → (∀zφ → ∀x(x = y → ∀zφ)))) |
5 | 4 | a1d 22 | . 2 ⊢ (∀y y = z → (¬ ∀x x = y → (x = y → (∀zφ → ∀x(x = y → ∀zφ))))) |
6 | ax11inda2.1 | . . 3 ⊢ (¬ ∀x x = y → (x = y → (φ → ∀x(x = y → φ)))) | |
7 | 6 | ax11indalem 2197 | . 2 ⊢ (¬ ∀y y = z → (¬ ∀x x = y → (x = y → (∀zφ → ∀x(x = y → ∀zφ))))) |
8 | 5, 7 | pm2.61i 156 | 1 ⊢ (¬ ∀x x = y → (x = y → (∀zφ → ∀x(x = y → ∀zφ)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-4 2135 ax-5o 2136 ax-6o 2137 ax-10o 2139 ax-12o 2142 ax-16 2144 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: ax11inda 2200 |
Copyright terms: Public domain | W3C validator |