New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abeq1 | GIF version |
Description: Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
abeq1 | ⊢ ({x ∣ φ} = A ↔ ∀x(φ ↔ x ∈ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2458 | . 2 ⊢ (A = {x ∣ φ} ↔ ∀x(x ∈ A ↔ φ)) | |
2 | eqcom 2355 | . 2 ⊢ ({x ∣ φ} = A ↔ A = {x ∣ φ}) | |
3 | bicom 191 | . . 3 ⊢ ((φ ↔ x ∈ A) ↔ (x ∈ A ↔ φ)) | |
4 | 3 | albii 1566 | . 2 ⊢ (∀x(φ ↔ x ∈ A) ↔ ∀x(x ∈ A ↔ φ)) |
5 | 1, 2, 4 | 3bitr4i 268 | 1 ⊢ ({x ∣ φ} = A ↔ ∀x(φ ↔ x ∈ A)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: abbi1dv 2469 euabsn2 3791 phidisjnn 4615 dm0rn0 4921 dffo3 5422 |
Copyright terms: Public domain | W3C validator |