NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  uniss GIF version

Theorem uniss 3913
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniss (A BA B)

Proof of Theorem uniss
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3268 . . . . 5 (A B → (y Ay B))
21anim2d 548 . . . 4 (A B → ((x y y A) → (x y y B)))
32eximdv 1622 . . 3 (A B → (y(x y y A) → y(x y y B)))
4 eluni 3895 . . 3 (x Ay(x y y A))
5 eluni 3895 . . 3 (x By(x y y B))
63, 4, 53imtr4g 261 . 2 (A B → (x Ax B))
76ssrdv 3279 1 (A BA B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   wcel 1710   wss 3258  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-uni 3893
This theorem is referenced by:  unissi  3915  unissd  3916  unidif  3924  intssuni2  3952  uniintsn  3964  sspw1  4336
  Copyright terms: Public domain W3C validator