Proof of Theorem ax11v2
Step | Hyp | Ref
| Expression |
1 | | a9ev 1656 |
. 2
⊢ ∃z z = y |
2 | | ax11v2.1 |
. . . . 5
⊢ (x = z →
(φ → ∀x(x = z →
φ))) |
3 | | equequ2 1686 |
. . . . . . 7
⊢ (z = y →
(x = z
↔ x = y)) |
4 | 3 | adantl 452 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ z = y) → (x =
z ↔ x = y)) |
5 | | dveeq2 1940 |
. . . . . . . . 9
⊢ (¬ ∀x x = y →
(z = y
→ ∀x z = y)) |
6 | 5 | imp 418 |
. . . . . . . 8
⊢ ((¬ ∀x x = y ∧ z = y) → ∀x z = y) |
7 | | nfa1 1788 |
. . . . . . . . 9
⊢ Ⅎx∀x z = y |
8 | 3 | imbi1d 308 |
. . . . . . . . . 10
⊢ (z = y →
((x = z
→ φ) ↔ (x = y →
φ))) |
9 | 8 | sps 1754 |
. . . . . . . . 9
⊢ (∀x z = y →
((x = z
→ φ) ↔ (x = y →
φ))) |
10 | 7, 9 | albid 1772 |
. . . . . . . 8
⊢ (∀x z = y →
(∀x(x = z → φ)
↔ ∀x(x = y → φ))) |
11 | 6, 10 | syl 15 |
. . . . . . 7
⊢ ((¬ ∀x x = y ∧ z = y) → (∀x(x = z →
φ) ↔ ∀x(x = y →
φ))) |
12 | 11 | imbi2d 307 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ z = y) → ((φ → ∀x(x = z →
φ)) ↔ (φ → ∀x(x = y →
φ)))) |
13 | 4, 12 | imbi12d 311 |
. . . . 5
⊢ ((¬ ∀x x = y ∧ z = y) → ((x =
z → (φ → ∀x(x = z →
φ))) ↔ (x = y →
(φ → ∀x(x = y →
φ))))) |
14 | 2, 13 | mpbii 202 |
. . . 4
⊢ ((¬ ∀x x = y ∧ z = y) → (x =
y → (φ → ∀x(x = y →
φ)))) |
15 | 14 | ex 423 |
. . 3
⊢ (¬ ∀x x = y →
(z = y
→ (x = y → (φ
→ ∀x(x = y → φ))))) |
16 | 15 | exlimdv 1636 |
. 2
⊢ (¬ ∀x x = y →
(∃z
z = y
→ (x = y → (φ
→ ∀x(x = y → φ))))) |
17 | 1, 16 | mpi 16 |
1
⊢ (¬ ∀x x = y →
(x = y
→ (φ → ∀x(x = y →
φ)))) |