New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > brin | GIF version |
Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
Ref | Expression |
---|---|
brin | ⊢ (A(R ∩ S)B ↔ (ARB ∧ ASB)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3220 | . 2 ⊢ (〈A, B〉 ∈ (R ∩ S) ↔ (〈A, B〉 ∈ R ∧ 〈A, B〉 ∈ S)) | |
2 | df-br 4641 | . 2 ⊢ (A(R ∩ S)B ↔ 〈A, B〉 ∈ (R ∩ S)) | |
3 | df-br 4641 | . . 3 ⊢ (ARB ↔ 〈A, B〉 ∈ R) | |
4 | df-br 4641 | . . 3 ⊢ (ASB ↔ 〈A, B〉 ∈ S) | |
5 | 3, 4 | anbi12i 678 | . 2 ⊢ ((ARB ∧ ASB) ↔ (〈A, B〉 ∈ R ∧ 〈A, B〉 ∈ S)) |
6 | 1, 2, 5 | 3bitr4i 268 | 1 ⊢ (A(R ∩ S)B ↔ (ARB ∧ ASB)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∩ cin 3209 〈cop 4562 class class class wbr 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-br 4641 |
This theorem is referenced by: brinxp2 4836 brres 4950 intasym 5029 fncnv 5159 dfid4 5504 trtxp 5782 brtxp 5784 elfix 5788 ersymtr 5933 porta 5934 sopc 5935 weds 5939 enpw1lem1 6062 enmap2lem1 6064 enmap1lem1 6070 nchoicelem8 6297 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |