Step | Hyp | Ref
| Expression |
1 | | brex 4690 |
. . 3
⊢ (A(( I ∘ F) ∖ ( ∼ I
∘ F))B →
(A ∈ V
∧ B ∈ V)) |
2 | 1 | simprd 449 |
. 2
⊢ (A(( I ∘ F) ∖ ( ∼ I
∘ F))B →
B ∈
V) |
3 | | brex 4690 |
. . . 4
⊢ (AFB → (A
∈ V ∧
B ∈
V)) |
4 | 3 | simprd 449 |
. . 3
⊢ (AFB → B ∈ V) |
5 | 4 | adantr 451 |
. 2
⊢ ((AFB ∧ ∀x(AFx → x =
B)) → B ∈
V) |
6 | | breq2 4644 |
. . . 4
⊢ (y = B →
(A(( I ∘
F) ∖ (
∼ I ∘ F))y ↔
A(( I ∘
F) ∖ (
∼ I ∘ F))B)) |
7 | | breq2 4644 |
. . . . 5
⊢ (y = B →
(AFy ↔
AFB)) |
8 | | eqeq2 2362 |
. . . . . . 7
⊢ (y = B →
(x = y
↔ x = B)) |
9 | 8 | imbi2d 307 |
. . . . . 6
⊢ (y = B →
((AFx →
x = y)
↔ (AFx →
x = B))) |
10 | 9 | albidv 1625 |
. . . . 5
⊢ (y = B →
(∀x(AFx →
x = y)
↔ ∀x(AFx →
x = B))) |
11 | 7, 10 | anbi12d 691 |
. . . 4
⊢ (y = B →
((AFy ∧ ∀x(AFx →
x = y))
↔ (AFB ∧ ∀x(AFx →
x = B)))) |
12 | 6, 11 | bibi12d 312 |
. . 3
⊢ (y = B →
((A(( I ∘ F) ∖ ( ∼ I ∘
F))y
↔ (AFy ∧ ∀x(AFx →
x = y))) ↔ (A((
I ∘ F)
∖ ( ∼ I ∘ F))B ↔ (AFB ∧ ∀x(AFx → x =
B))))) |
13 | | brdif 4695 |
. . . 4
⊢ (A(( I ∘ F) ∖ ( ∼ I
∘ F))y ↔
(A( I ∘
F)y
∧ ¬ A(
∼ I ∘ F)y)) |
14 | | coi2 5096 |
. . . . . 6
⊢ ( I ∘ F) =
F |
15 | 14 | breqi 4646 |
. . . . 5
⊢ (A( I ∘ F)y ↔
AFy) |
16 | | brco 4884 |
. . . . . . 7
⊢ (A( ∼ I ∘
F)y
↔ ∃x(AFx ∧ x ∼ I
y)) |
17 | | df-br 4641 |
. . . . . . . . . 10
⊢ (x ∼ I y
↔ 〈x, y〉 ∈ ∼ I
) |
18 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ x ∈
V |
19 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ y ∈
V |
20 | 18, 19 | opex 4589 |
. . . . . . . . . . . 12
⊢ 〈x, y〉 ∈ V |
21 | 20 | elcompl 3226 |
. . . . . . . . . . 11
⊢ (〈x, y〉 ∈ ∼ I ↔ ¬ 〈x, y〉 ∈ I ) |
22 | | df-br 4641 |
. . . . . . . . . . . 12
⊢ (x I y ↔
〈x,
y〉 ∈ I ) |
23 | 19 | ideq 4871 |
. . . . . . . . . . . 12
⊢ (x I y ↔
x = y) |
24 | 22, 23 | bitr3i 242 |
. . . . . . . . . . 11
⊢ (〈x, y〉 ∈ I ↔ x =
y) |
25 | 21, 24 | xchbinx 301 |
. . . . . . . . . 10
⊢ (〈x, y〉 ∈ ∼ I ↔ ¬ x = y) |
26 | 17, 25 | bitri 240 |
. . . . . . . . 9
⊢ (x ∼ I y
↔ ¬ x = y) |
27 | 26 | anbi2i 675 |
. . . . . . . 8
⊢ ((AFx ∧ x ∼ I y)
↔ (AFx ∧ ¬ x =
y)) |
28 | 27 | exbii 1582 |
. . . . . . 7
⊢ (∃x(AFx ∧ x ∼ I y)
↔ ∃x(AFx ∧ ¬ x =
y)) |
29 | | exanali 1585 |
. . . . . . 7
⊢ (∃x(AFx ∧ ¬ x = y) ↔
¬ ∀x(AFx →
x = y)) |
30 | 16, 28, 29 | 3bitrri 263 |
. . . . . 6
⊢ (¬ ∀x(AFx → x =
y) ↔ A( ∼ I ∘
F)y) |
31 | 30 | con1bii 321 |
. . . . 5
⊢ (¬ A( ∼ I ∘
F)y
↔ ∀x(AFx →
x = y)) |
32 | 15, 31 | anbi12i 678 |
. . . 4
⊢ ((A( I ∘ F)y ∧ ¬ A( ∼
I ∘ F)y) ↔
(AFy ∧ ∀x(AFx →
x = y))) |
33 | 13, 32 | bitri 240 |
. . 3
⊢ (A(( I ∘ F) ∖ ( ∼ I
∘ F))y ↔
(AFy ∧ ∀x(AFx →
x = y))) |
34 | 12, 33 | vtoclg 2915 |
. 2
⊢ (B ∈ V →
(A(( I ∘
F) ∖ (
∼ I ∘ F))B ↔
(AFB ∧ ∀x(AFx →
x = B)))) |
35 | 2, 5, 34 | pm5.21nii 342 |
1
⊢ (A(( I ∘ F) ∖ ( ∼ I
∘ F))B ↔
(AFB ∧ ∀x(AFx →
x = B))) |