New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvrexcsf | GIF version |
Description: A more general version of cbvrexf 2831 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
cbvralcsf.1 | ⊢ ℲyA |
cbvralcsf.2 | ⊢ ℲxB |
cbvralcsf.3 | ⊢ Ⅎyφ |
cbvralcsf.4 | ⊢ Ⅎxψ |
cbvralcsf.5 | ⊢ (x = y → A = B) |
cbvralcsf.6 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvrexcsf | ⊢ (∃x ∈ A φ ↔ ∃y ∈ B ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralcsf.1 | . . . 4 ⊢ ℲyA | |
2 | cbvralcsf.2 | . . . 4 ⊢ ℲxB | |
3 | cbvralcsf.3 | . . . . 5 ⊢ Ⅎyφ | |
4 | 3 | nfn 1793 | . . . 4 ⊢ Ⅎy ¬ φ |
5 | cbvralcsf.4 | . . . . 5 ⊢ Ⅎxψ | |
6 | 5 | nfn 1793 | . . . 4 ⊢ Ⅎx ¬ ψ |
7 | cbvralcsf.5 | . . . 4 ⊢ (x = y → A = B) | |
8 | cbvralcsf.6 | . . . . 5 ⊢ (x = y → (φ ↔ ψ)) | |
9 | 8 | notbid 285 | . . . 4 ⊢ (x = y → (¬ φ ↔ ¬ ψ)) |
10 | 1, 2, 4, 6, 7, 9 | cbvralcsf 3199 | . . 3 ⊢ (∀x ∈ A ¬ φ ↔ ∀y ∈ B ¬ ψ) |
11 | 10 | notbii 287 | . 2 ⊢ (¬ ∀x ∈ A ¬ φ ↔ ¬ ∀y ∈ B ¬ ψ) |
12 | dfrex2 2628 | . 2 ⊢ (∃x ∈ A φ ↔ ¬ ∀x ∈ A ¬ φ) | |
13 | dfrex2 2628 | . 2 ⊢ (∃y ∈ B ψ ↔ ¬ ∀y ∈ B ¬ ψ) | |
14 | 11, 12, 13 | 3bitr4i 268 | 1 ⊢ (∃x ∈ A φ ↔ ∃y ∈ B ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 Ⅎwnf 1544 = wceq 1642 Ⅎwnfc 2477 ∀wral 2615 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: cbvrexv2 3204 |
Copyright terms: Public domain | W3C validator |