New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvopab1s | GIF version |
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
Ref | Expression |
---|---|
cbvopab1s | ⊢ {〈x, y〉 ∣ φ} = {〈z, y〉 ∣ [z / x]φ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . 4 ⊢ Ⅎz∃y(w = 〈x, y〉 ∧ φ) | |
2 | nfv 1619 | . . . . . 6 ⊢ Ⅎx w = 〈z, y〉 | |
3 | nfs1v 2106 | . . . . . 6 ⊢ Ⅎx[z / x]φ | |
4 | 2, 3 | nfan 1824 | . . . . 5 ⊢ Ⅎx(w = 〈z, y〉 ∧ [z / x]φ) |
5 | 4 | nfex 1843 | . . . 4 ⊢ Ⅎx∃y(w = 〈z, y〉 ∧ [z / x]φ) |
6 | opeq1 4579 | . . . . . . 7 ⊢ (x = z → 〈x, y〉 = 〈z, y〉) | |
7 | 6 | eqeq2d 2364 | . . . . . 6 ⊢ (x = z → (w = 〈x, y〉 ↔ w = 〈z, y〉)) |
8 | sbequ12 1919 | . . . . . 6 ⊢ (x = z → (φ ↔ [z / x]φ)) | |
9 | 7, 8 | anbi12d 691 | . . . . 5 ⊢ (x = z → ((w = 〈x, y〉 ∧ φ) ↔ (w = 〈z, y〉 ∧ [z / x]φ))) |
10 | 9 | exbidv 1626 | . . . 4 ⊢ (x = z → (∃y(w = 〈x, y〉 ∧ φ) ↔ ∃y(w = 〈z, y〉 ∧ [z / x]φ))) |
11 | 1, 5, 10 | cbvex 1985 | . . 3 ⊢ (∃x∃y(w = 〈x, y〉 ∧ φ) ↔ ∃z∃y(w = 〈z, y〉 ∧ [z / x]φ)) |
12 | 11 | abbii 2466 | . 2 ⊢ {w ∣ ∃x∃y(w = 〈x, y〉 ∧ φ)} = {w ∣ ∃z∃y(w = 〈z, y〉 ∧ [z / x]φ)} |
13 | df-opab 4624 | . 2 ⊢ {〈x, y〉 ∣ φ} = {w ∣ ∃x∃y(w = 〈x, y〉 ∧ φ)} | |
14 | df-opab 4624 | . 2 ⊢ {〈z, y〉 ∣ [z / x]φ} = {w ∣ ∃z∃y(w = 〈z, y〉 ∧ [z / x]φ)} | |
15 | 12, 13, 14 | 3eqtr4i 2383 | 1 ⊢ {〈x, y〉 ∣ φ} = {〈z, y〉 ∣ [z / x]φ} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 [wsb 1648 {cab 2339 〈cop 4562 {copab 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |