NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbxpg GIF version

Theorem csbxpg 4814
Description: Distribute proper substitution through the cross product of two classes. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbxpg (A D[A / x](B × C) = ([A / x]B × [A / x]C))

Proof of Theorem csbxpg
Dummy variables w y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3198 . . 3 (A D[A / x]{z wy(z = w, y (w B y C))} = {z A / xwy(z = w, y (w B y C))})
2 sbcexg 3097 . . . . 5 (A D → ([̣A / xwy(z = w, y (w B y C)) ↔ wA / xy(z = w, y (w B y C))))
3 sbcexg 3097 . . . . . . 7 (A D → ([̣A / xy(z = w, y (w B y C)) ↔ yA / x]̣(z = w, y (w B y C))))
4 sbcang 3090 . . . . . . . . 9 (A D → ([̣A / x]̣(z = w, y (w B y C)) ↔ ([̣A / xz = w, y A / x]̣(w B y C))))
5 sbcg 3112 . . . . . . . . . 10 (A D → ([̣A / xz = w, yz = w, y))
6 sbcang 3090 . . . . . . . . . . 11 (A D → ([̣A / x]̣(w B y C) ↔ ([̣A / xw B A / xy C)))
7 sbcel2g 3158 . . . . . . . . . . . 12 (A D → ([̣A / xw Bw [A / x]B))
8 sbcel2g 3158 . . . . . . . . . . . 12 (A D → ([̣A / xy Cy [A / x]C))
97, 8anbi12d 691 . . . . . . . . . . 11 (A D → (([̣A / xw B A / xy C) ↔ (w [A / x]B y [A / x]C)))
106, 9bitrd 244 . . . . . . . . . 10 (A D → ([̣A / x]̣(w B y C) ↔ (w [A / x]B y [A / x]C)))
115, 10anbi12d 691 . . . . . . . . 9 (A D → (([̣A / xz = w, y A / x]̣(w B y C)) ↔ (z = w, y (w [A / x]B y [A / x]C))))
124, 11bitrd 244 . . . . . . . 8 (A D → ([̣A / x]̣(z = w, y (w B y C)) ↔ (z = w, y (w [A / x]B y [A / x]C))))
1312exbidv 1626 . . . . . . 7 (A D → (yA / x]̣(z = w, y (w B y C)) ↔ y(z = w, y (w [A / x]B y [A / x]C))))
143, 13bitrd 244 . . . . . 6 (A D → ([̣A / xy(z = w, y (w B y C)) ↔ y(z = w, y (w [A / x]B y [A / x]C))))
1514exbidv 1626 . . . . 5 (A D → (wA / xy(z = w, y (w B y C)) ↔ wy(z = w, y (w [A / x]B y [A / x]C))))
162, 15bitrd 244 . . . 4 (A D → ([̣A / xwy(z = w, y (w B y C)) ↔ wy(z = w, y (w [A / x]B y [A / x]C))))
1716abbidv 2468 . . 3 (A D → {z A / xwy(z = w, y (w B y C))} = {z wy(z = w, y (w [A / x]B y [A / x]C))})
181, 17eqtrd 2385 . 2 (A D[A / x]{z wy(z = w, y (w B y C))} = {z wy(z = w, y (w [A / x]B y [A / x]C))})
19 df-xp 4785 . . . 4 (B × C) = {w, y (w B y C)}
20 df-opab 4624 . . . 4 {w, y (w B y C)} = {z wy(z = w, y (w B y C))}
2119, 20eqtri 2373 . . 3 (B × C) = {z wy(z = w, y (w B y C))}
2221csbeq2i 3163 . 2 [A / x](B × C) = [A / x]{z wy(z = w, y (w B y C))}
23 df-xp 4785 . . 3 ([A / x]B × [A / x]C) = {w, y (w [A / x]B y [A / x]C)}
24 df-opab 4624 . . 3 {w, y (w [A / x]B y [A / x]C)} = {z wy(z = w, y (w [A / x]B y [A / x]C))}
2523, 24eqtri 2373 . 2 ([A / x]B × [A / x]C) = {z wy(z = w, y (w [A / x]B y [A / x]C))}
2618, 22, 253eqtr4g 2410 1 (A D[A / x](B × C) = ([A / x]B × [A / x]C))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wsbc 3047  [csb 3137  cop 4562  {copab 4623   × cxp 4771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138  df-opab 4624  df-xp 4785
This theorem is referenced by:  csbresg  4977
  Copyright terms: Public domain W3C validator