NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elopab GIF version

Theorem elopab 4697
Description: Membership in a class abstraction of pairs. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elopab (A {x, y φ} ↔ xy(A = x, y φ))
Distinct variable groups:   x,A   y,A
Allowed substitution hints:   φ(x,y)

Proof of Theorem elopab
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 elex 2868 . 2 (A {x, y φ} → A V)
2 vex 2863 . . . . . 6 x V
3 vex 2863 . . . . . 6 y V
42, 3opex 4589 . . . . 5 x, y V
5 eleq1 2413 . . . . 5 (A = x, y → (A V ↔ x, y V))
64, 5mpbiri 224 . . . 4 (A = x, yA V)
76adantr 451 . . 3 ((A = x, y φ) → A V)
87exlimivv 1635 . 2 (xy(A = x, y φ) → A V)
9 eqeq1 2359 . . . . 5 (z = A → (z = x, yA = x, y))
109anbi1d 685 . . . 4 (z = A → ((z = x, y φ) ↔ (A = x, y φ)))
11102exbidv 1628 . . 3 (z = A → (xy(z = x, y φ) ↔ xy(A = x, y φ)))
12 df-opab 4624 . . 3 {x, y φ} = {z xy(z = x, y φ)}
1311, 12elab2g 2988 . 2 (A V → (A {x, y φ} ↔ xy(A = x, y φ)))
141, 8, 13pm5.21nii 342 1 (A {x, y φ} ↔ xy(A = x, y φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cop 4562  {copab 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624
This theorem is referenced by:  opelopabt  4700  opelopabga  4701  opabn0  4717  el1st  4730  setconslem4  4735  elswap  4741  elxp  4802  elcnv  4890  composeex  5821
  Copyright terms: Public domain W3C validator