New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvopab2 | GIF version |
Description: Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
cbvopab2.1 | ⊢ Ⅎzφ |
cbvopab2.2 | ⊢ Ⅎyψ |
cbvopab2.3 | ⊢ (y = z → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvopab2 | ⊢ {〈x, y〉 ∣ φ} = {〈x, z〉 ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . . . 6 ⊢ Ⅎz w = 〈x, y〉 | |
2 | cbvopab2.1 | . . . . . 6 ⊢ Ⅎzφ | |
3 | 1, 2 | nfan 1824 | . . . . 5 ⊢ Ⅎz(w = 〈x, y〉 ∧ φ) |
4 | nfv 1619 | . . . . . 6 ⊢ Ⅎy w = 〈x, z〉 | |
5 | cbvopab2.2 | . . . . . 6 ⊢ Ⅎyψ | |
6 | 4, 5 | nfan 1824 | . . . . 5 ⊢ Ⅎy(w = 〈x, z〉 ∧ ψ) |
7 | opeq2 4580 | . . . . . . 7 ⊢ (y = z → 〈x, y〉 = 〈x, z〉) | |
8 | 7 | eqeq2d 2364 | . . . . . 6 ⊢ (y = z → (w = 〈x, y〉 ↔ w = 〈x, z〉)) |
9 | cbvopab2.3 | . . . . . 6 ⊢ (y = z → (φ ↔ ψ)) | |
10 | 8, 9 | anbi12d 691 | . . . . 5 ⊢ (y = z → ((w = 〈x, y〉 ∧ φ) ↔ (w = 〈x, z〉 ∧ ψ))) |
11 | 3, 6, 10 | cbvex 1985 | . . . 4 ⊢ (∃y(w = 〈x, y〉 ∧ φ) ↔ ∃z(w = 〈x, z〉 ∧ ψ)) |
12 | 11 | exbii 1582 | . . 3 ⊢ (∃x∃y(w = 〈x, y〉 ∧ φ) ↔ ∃x∃z(w = 〈x, z〉 ∧ ψ)) |
13 | 12 | abbii 2466 | . 2 ⊢ {w ∣ ∃x∃y(w = 〈x, y〉 ∧ φ)} = {w ∣ ∃x∃z(w = 〈x, z〉 ∧ ψ)} |
14 | df-opab 4624 | . 2 ⊢ {〈x, y〉 ∣ φ} = {w ∣ ∃x∃y(w = 〈x, y〉 ∧ φ)} | |
15 | df-opab 4624 | . 2 ⊢ {〈x, z〉 ∣ ψ} = {w ∣ ∃x∃z(w = 〈x, z〉 ∧ ψ)} | |
16 | 13, 14, 15 | 3eqtr4i 2383 | 1 ⊢ {〈x, y〉 ∣ φ} = {〈x, z〉 ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 {cab 2339 〈cop 4562 {copab 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 |
This theorem is referenced by: cbvoprab3 5572 |
Copyright terms: Public domain | W3C validator |