NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fvfullfunlem3 GIF version

Theorem fvfullfunlem3 5864
Description: Lemma for fvfullfun 5865. Part one of the full function definition agrees with the set itself over its domain. (Contributed by SF, 9-Mar-2015.)
Assertion
Ref Expression
fvfullfunlem3 (A dom (( I F) ( ∼ I F)) → ((( I F) ( ∼ I F)) ‘A) = (FA))

Proof of Theorem fvfullfunlem3
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 5120 . . . 4 (Fun (F dom (( I F) ( ∼ I F))) ↔ xyz((x(F dom (( I F) ( ∼ I F)))y x(F dom (( I F) ( ∼ I F)))z) → y = z))
2 brres 4950 . . . . . . 7 (x(F dom (( I F) ( ∼ I F)))y ↔ (xFy x dom (( I F) ( ∼ I F))))
3 fvfullfunlem1 5862 . . . . . . . . 9 dom (( I F) ( ∼ I F)) = {x ∃!z xFz}
43abeq2i 2461 . . . . . . . 8 (x dom (( I F) ( ∼ I F)) ↔ ∃!z xFz)
54anbi2i 675 . . . . . . 7 ((xFy x dom (( I F) ( ∼ I F))) ↔ (xFy ∃!z xFz))
62, 5bitri 240 . . . . . 6 (x(F dom (( I F) ( ∼ I F)))y ↔ (xFy ∃!z xFz))
7 brres 4950 . . . . . . 7 (x(F dom (( I F) ( ∼ I F)))z ↔ (xFz x dom (( I F) ( ∼ I F))))
8 fvfullfunlem1 5862 . . . . . . . . 9 dom (( I F) ( ∼ I F)) = {x ∃!y xFy}
98abeq2i 2461 . . . . . . . 8 (x dom (( I F) ( ∼ I F)) ↔ ∃!y xFy)
109anbi2i 675 . . . . . . 7 ((xFz x dom (( I F) ( ∼ I F))) ↔ (xFz ∃!y xFy))
117, 10bitri 240 . . . . . 6 (x(F dom (( I F) ( ∼ I F)))z ↔ (xFz ∃!y xFy))
12 tz6.12-1 5345 . . . . . . . . 9 ((xFy ∃!y xFy) → (Fx) = y)
1312adantrl 696 . . . . . . . 8 ((xFy (xFz ∃!y xFy)) → (Fx) = y)
14 tz6.12-1 5345 . . . . . . . . 9 ((xFz ∃!y xFy) → (Fx) = z)
1514adantl 452 . . . . . . . 8 ((xFy (xFz ∃!y xFy)) → (Fx) = z)
1613, 15eqtr3d 2387 . . . . . . 7 ((xFy (xFz ∃!y xFy)) → y = z)
1716adantlr 695 . . . . . 6 (((xFy ∃!z xFz) (xFz ∃!y xFy)) → y = z)
186, 11, 17syl2anb 465 . . . . 5 ((x(F dom (( I F) ( ∼ I F)))y x(F dom (( I F) ( ∼ I F)))z) → y = z)
1918gen2 1547 . . . 4 yz((x(F dom (( I F) ( ∼ I F)))y x(F dom (( I F) ( ∼ I F)))z) → y = z)
201, 19mpgbir 1550 . . 3 Fun (F dom (( I F) ( ∼ I F)))
21 fvfullfunlem2 5863 . . . . 5 (( I F) ( ∼ I F)) F
22 ssdmrn 5100 . . . . . 6 (( I F) ( ∼ I F)) (dom (( I F) ( ∼ I F)) × ran (( I F) ( ∼ I F)))
23 ssv 3292 . . . . . . 7 ran (( I F) ( ∼ I F)) V
24 xpss2 4858 . . . . . . 7 (ran (( I F) ( ∼ I F)) V → (dom (( I F) ( ∼ I F)) × ran (( I F) ( ∼ I F))) (dom (( I F) ( ∼ I F)) × V))
2523, 24ax-mp 5 . . . . . 6 (dom (( I F) ( ∼ I F)) × ran (( I F) ( ∼ I F))) (dom (( I F) ( ∼ I F)) × V)
2622, 25sstri 3282 . . . . 5 (( I F) ( ∼ I F)) (dom (( I F) ( ∼ I F)) × V)
2721, 26ssini 3479 . . . 4 (( I F) ( ∼ I F)) (F ∩ (dom (( I F) ( ∼ I F)) × V))
28 df-res 4789 . . . 4 (F dom (( I F) ( ∼ I F))) = (F ∩ (dom (( I F) ( ∼ I F)) × V))
2927, 28sseqtr4i 3305 . . 3 (( I F) ( ∼ I F)) (F dom (( I F) ( ∼ I F)))
30 funssfv 5344 . . 3 ((Fun (F dom (( I F) ( ∼ I F))) (( I F) ( ∼ I F)) (F dom (( I F) ( ∼ I F))) A dom (( I F) ( ∼ I F))) → ((F dom (( I F) ( ∼ I F))) ‘A) = ((( I F) ( ∼ I F)) ‘A))
3120, 29, 30mp3an12 1267 . 2 (A dom (( I F) ( ∼ I F)) → ((F dom (( I F) ( ∼ I F))) ‘A) = ((( I F) ( ∼ I F)) ‘A))
32 fvres 5343 . 2 (A dom (( I F) ( ∼ I F)) → ((F dom (( I F) ( ∼ I F))) ‘A) = (FA))
3331, 32eqtr3d 2387 1 (A dom (( I F) ( ∼ I F)) → ((( I F) ( ∼ I F)) ‘A) = (FA))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540   = wceq 1642   wcel 1710  ∃!weu 2204  Vcvv 2860  ccompl 3206   cdif 3207  cin 3209   wss 3258   class class class wbr 4640   ccom 4722   I cid 4764   × cxp 4771  dom cdm 4773  ran crn 4774   cres 4775  Fun wfun 4776  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fv 4796
This theorem is referenced by:  fvfullfun  5865
  Copyright terms: Public domain W3C validator