New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > resundir | GIF version |
Description: Distributive law for restriction over union. (Contributed by set.mm contributors, 23-Sep-2004.) |
Ref | Expression |
---|---|
resundir | ⊢ ((A ∪ B) ↾ C) = ((A ↾ C) ∪ (B ↾ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 3504 | . 2 ⊢ ((A ∪ B) ∩ (C × V)) = ((A ∩ (C × V)) ∪ (B ∩ (C × V))) | |
2 | df-res 4789 | . 2 ⊢ ((A ∪ B) ↾ C) = ((A ∪ B) ∩ (C × V)) | |
3 | df-res 4789 | . . 3 ⊢ (A ↾ C) = (A ∩ (C × V)) | |
4 | df-res 4789 | . . 3 ⊢ (B ↾ C) = (B ∩ (C × V)) | |
5 | 3, 4 | uneq12i 3417 | . 2 ⊢ ((A ↾ C) ∪ (B ↾ C)) = ((A ∩ (C × V)) ∪ (B ∩ (C × V))) |
6 | 1, 2, 5 | 3eqtr4i 2383 | 1 ⊢ ((A ∪ B) ↾ C) = ((A ↾ C) ∪ (B ↾ C)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 Vcvv 2860 ∪ cun 3208 ∩ cin 3209 × cxp 4771 ↾ cres 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-res 4789 |
This theorem is referenced by: imaundir 5041 fvunsn 5445 fvsnun1 5448 fvsnun2 5449 |
Copyright terms: Public domain | W3C validator |