NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  f11o GIF version

Theorem f11o 5316
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by set.mm contributors, 4-Apr-1998.)
Hypothesis
Ref Expression
f11o.1 F V
Assertion
Ref Expression
f11o (F:A1-1Bx(F:A1-1-ontox x B))
Distinct variable groups:   x,F   x,A   x,B

Proof of Theorem f11o
StepHypRef Expression
1 f11o.1 . . . 4 F V
21ffoss 5315 . . 3 (F:A–→Bx(F:Aontox x B))
32anbi1i 676 . 2 ((F:A–→B Fun F) ↔ (x(F:Aontox x B) Fun F))
4 df-f1 4793 . 2 (F:A1-1B ↔ (F:A–→B Fun F))
5 dff1o3 5293 . . . . . 6 (F:A1-1-ontox ↔ (F:Aontox Fun F))
65anbi1i 676 . . . . 5 ((F:A1-1-ontox x B) ↔ ((F:Aontox Fun F) x B))
7 an32 773 . . . . 5 (((F:Aontox Fun F) x B) ↔ ((F:Aontox x B) Fun F))
86, 7bitri 240 . . . 4 ((F:A1-1-ontox x B) ↔ ((F:Aontox x B) Fun F))
98exbii 1582 . . 3 (x(F:A1-1-ontox x B) ↔ x((F:Aontox x B) Fun F))
10 19.41v 1901 . . 3 (x((F:Aontox x B) Fun F) ↔ (x(F:Aontox x B) Fun F))
119, 10bitri 240 . 2 (x(F:A1-1-ontox x B) ↔ (x(F:Aontox x B) Fun F))
123, 4, 113bitr4i 268 1 (F:A1-1Bx(F:A1-1-ontox x B))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   wcel 1710  Vcvv 2860   wss 3258  ccnv 4772  Fun wfun 4776  –→wf 4778  1-1wf1 4779  ontowfo 4780  1-1-ontowf1o 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-br 4641  df-ima 4728  df-rn 4787  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator