New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f11o | GIF version |
Description: Relationship between one-to-one and one-to-one onto function. (Contributed by set.mm contributors, 4-Apr-1998.) |
Ref | Expression |
---|---|
f11o.1 | ⊢ F ∈ V |
Ref | Expression |
---|---|
f11o | ⊢ (F:A–1-1→B ↔ ∃x(F:A–1-1-onto→x ∧ x ⊆ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f11o.1 | . . . 4 ⊢ F ∈ V | |
2 | 1 | ffoss 5315 | . . 3 ⊢ (F:A–→B ↔ ∃x(F:A–onto→x ∧ x ⊆ B)) |
3 | 2 | anbi1i 676 | . 2 ⊢ ((F:A–→B ∧ Fun ◡F) ↔ (∃x(F:A–onto→x ∧ x ⊆ B) ∧ Fun ◡F)) |
4 | df-f1 4793 | . 2 ⊢ (F:A–1-1→B ↔ (F:A–→B ∧ Fun ◡F)) | |
5 | dff1o3 5293 | . . . . . 6 ⊢ (F:A–1-1-onto→x ↔ (F:A–onto→x ∧ Fun ◡F)) | |
6 | 5 | anbi1i 676 | . . . . 5 ⊢ ((F:A–1-1-onto→x ∧ x ⊆ B) ↔ ((F:A–onto→x ∧ Fun ◡F) ∧ x ⊆ B)) |
7 | an32 773 | . . . . 5 ⊢ (((F:A–onto→x ∧ Fun ◡F) ∧ x ⊆ B) ↔ ((F:A–onto→x ∧ x ⊆ B) ∧ Fun ◡F)) | |
8 | 6, 7 | bitri 240 | . . . 4 ⊢ ((F:A–1-1-onto→x ∧ x ⊆ B) ↔ ((F:A–onto→x ∧ x ⊆ B) ∧ Fun ◡F)) |
9 | 8 | exbii 1582 | . . 3 ⊢ (∃x(F:A–1-1-onto→x ∧ x ⊆ B) ↔ ∃x((F:A–onto→x ∧ x ⊆ B) ∧ Fun ◡F)) |
10 | 19.41v 1901 | . . 3 ⊢ (∃x((F:A–onto→x ∧ x ⊆ B) ∧ Fun ◡F) ↔ (∃x(F:A–onto→x ∧ x ⊆ B) ∧ Fun ◡F)) | |
11 | 9, 10 | bitri 240 | . 2 ⊢ (∃x(F:A–1-1-onto→x ∧ x ⊆ B) ↔ (∃x(F:A–onto→x ∧ x ⊆ B) ∧ Fun ◡F)) |
12 | 3, 4, 11 | 3bitr4i 268 | 1 ⊢ (F:A–1-1→B ↔ ∃x(F:A–1-1-onto→x ∧ x ⊆ B)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 Vcvv 2860 ⊆ wss 3258 ◡ccnv 4772 Fun wfun 4776 –→wf 4778 –1-1→wf1 4779 –onto→wfo 4780 –1-1-onto→wf1o 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-ima 4728 df-rn 4787 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |