New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  f11o GIF version

Theorem f11o 5315
 Description: Relationship between one-to-one and one-to-one onto function. (Contributed by set.mm contributors, 4-Apr-1998.)
Hypothesis
Ref Expression
f11o.1 F V
Assertion
Ref Expression
f11o (F:A1-1Bx(F:A1-1-ontox x B))
Distinct variable groups:   x,F   x,A   x,B

Proof of Theorem f11o
StepHypRef Expression
1 f11o.1 . . . 4 F V
21ffoss 5314 . . 3 (F:A–→Bx(F:Aontox x B))
32anbi1i 676 . 2 ((F:A–→B Fun F) ↔ (x(F:Aontox x B) Fun F))
4 df-f1 4792 . 2 (F:A1-1B ↔ (F:A–→B Fun F))
5 dff1o3 5292 . . . . . 6 (F:A1-1-ontox ↔ (F:Aontox Fun F))
65anbi1i 676 . . . . 5 ((F:A1-1-ontox x B) ↔ ((F:Aontox Fun F) x B))
7 an32 773 . . . . 5 (((F:Aontox Fun F) x B) ↔ ((F:Aontox x B) Fun F))
86, 7bitri 240 . . . 4 ((F:A1-1-ontox x B) ↔ ((F:Aontox x B) Fun F))
98exbii 1582 . . 3 (x(F:A1-1-ontox x B) ↔ x((F:Aontox x B) Fun F))
10 19.41v 1901 . . 3 (x((F:Aontox x B) Fun F) ↔ (x(F:Aontox x B) Fun F))
119, 10bitri 240 . 2 (x(F:A1-1-ontox x B) ↔ (x(F:Aontox x B) Fun F))
123, 4, 113bitr4i 268 1 (F:A1-1Bx(F:A1-1-ontox x B))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 176   ∧ wa 358  ∃wex 1541   ∈ wcel 1710  Vcvv 2859   ⊆ wss 3257  ◡ccnv 4771  Fun wfun 4775  –→wf 4777  –1-1→wf1 4778  –onto→wfo 4779  –1-1-onto→wf1o 4780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-addc 4378  df-nnc 4379  df-phi 4565  df-op 4566  df-br 4640  df-ima 4727  df-rn 4786  df-f 4791  df-f1 4792  df-fo 4793  df-f1o 4794 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator