New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f1ofo | GIF version |
Description: A one-to-one onto function is an onto function. (Contributed by set.mm contributors, 28-Apr-2004.) |
Ref | Expression |
---|---|
f1ofo | ⊢ (F:A–1-1-onto→B → F:A–onto→B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o3 5293 | . 2 ⊢ (F:A–1-1-onto→B ↔ (F:A–onto→B ∧ Fun ◡F)) | |
2 | 1 | simplbi 446 | 1 ⊢ (F:A–1-1-onto→B → F:A–onto→B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ◡ccnv 4772 Fun wfun 4776 –onto→wfo 4780 –1-1-onto→wf1o 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 |
This theorem is referenced by: f1imacnv 5303 resin 5308 f1ococnv2 5310 fo00 5319 isoini 5498 bren 6031 enpw1 6063 enmap1lem5 6074 nenpw1pwlem2 6086 ncdisjun 6137 1cnc 6140 sbthlem3 6206 lenc 6224 |
Copyright terms: Public domain | W3C validator |