| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dfin4 | GIF version | ||
| Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) | 
| Ref | Expression | 
|---|---|
| dfin4 | ⊢ (A ∩ B) = (A ∖ (A ∖ B)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inss1 3476 | . . 3 ⊢ (A ∩ B) ⊆ A | |
| 2 | dfss4 3490 | . . 3 ⊢ ((A ∩ B) ⊆ A ↔ (A ∖ (A ∖ (A ∩ B))) = (A ∩ B)) | |
| 3 | 1, 2 | mpbi 199 | . 2 ⊢ (A ∖ (A ∖ (A ∩ B))) = (A ∩ B) | 
| 4 | difin 3493 | . . 3 ⊢ (A ∖ (A ∩ B)) = (A ∖ B) | |
| 5 | 4 | difeq2i 3383 | . 2 ⊢ (A ∖ (A ∖ (A ∩ B))) = (A ∖ (A ∖ B)) | 
| 6 | 3, 5 | eqtr3i 2375 | 1 ⊢ (A ∩ B) = (A ∖ (A ∖ B)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1642 ∖ cdif 3207 ∩ cin 3209 ⊆ wss 3258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 | 
| This theorem is referenced by: indif 3498 cnvin 5036 imain 5173 resin 5308 | 
| Copyright terms: Public domain | W3C validator |