NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  invdif GIF version

Theorem invdif 3497
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif (A ∩ (V B)) = (A B)

Proof of Theorem invdif
StepHypRef Expression
1 dfin2 3492 . 2 (A ∩ (V B)) = (A (V (V B)))
2 ddif 3399 . . 3 (V (V B)) = B
32difeq2i 3383 . 2 (A (V (V B))) = (A B)
41, 3eqtri 2373 1 (A ∩ (V B)) = (A B)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  Vcvv 2860   cdif 3207  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216
This theorem is referenced by:  indif2  3499  difundi  3508  difundir  3509  difindi  3510  difindir  3511  difun1  3515  undif1  3626  difdifdir  3638
  Copyright terms: Public domain W3C validator