New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfin3 | GIF version |
Description: Intersection defined in terms of union (De Morgan's law. Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
dfin3 | ⊢ (A ∩ B) = (V ∖ ((V ∖ A) ∪ (V ∖ B))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ddif 3399 | . 2 ⊢ (V ∖ (V ∖ (A ∖ (V ∖ B)))) = (A ∖ (V ∖ B)) | |
2 | dfun2 3491 | . . . 4 ⊢ ((V ∖ A) ∪ (V ∖ B)) = (V ∖ ((V ∖ (V ∖ A)) ∖ (V ∖ B))) | |
3 | ddif 3399 | . . . . . 6 ⊢ (V ∖ (V ∖ A)) = A | |
4 | 3 | difeq1i 3382 | . . . . 5 ⊢ ((V ∖ (V ∖ A)) ∖ (V ∖ B)) = (A ∖ (V ∖ B)) |
5 | 4 | difeq2i 3383 | . . . 4 ⊢ (V ∖ ((V ∖ (V ∖ A)) ∖ (V ∖ B))) = (V ∖ (A ∖ (V ∖ B))) |
6 | 2, 5 | eqtri 2373 | . . 3 ⊢ ((V ∖ A) ∪ (V ∖ B)) = (V ∖ (A ∖ (V ∖ B))) |
7 | 6 | difeq2i 3383 | . 2 ⊢ (V ∖ ((V ∖ A) ∪ (V ∖ B))) = (V ∖ (V ∖ (A ∖ (V ∖ B)))) |
8 | dfin2 3492 | . 2 ⊢ (A ∩ B) = (A ∖ (V ∖ B)) | |
9 | 1, 7, 8 | 3eqtr4ri 2384 | 1 ⊢ (A ∩ B) = (V ∖ ((V ∖ A) ∪ (V ∖ B))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 Vcvv 2860 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 |
This theorem is referenced by: difindi 3510 |
Copyright terms: Public domain | W3C validator |