New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > inab | GIF version |
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inab | ⊢ ({x ∣ φ} ∩ {x ∣ ψ}) = {x ∣ (φ ∧ ψ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sban 2069 | . . 3 ⊢ ([y / x](φ ∧ ψ) ↔ ([y / x]φ ∧ [y / x]ψ)) | |
2 | df-clab 2340 | . . 3 ⊢ (y ∈ {x ∣ (φ ∧ ψ)} ↔ [y / x](φ ∧ ψ)) | |
3 | df-clab 2340 | . . . 4 ⊢ (y ∈ {x ∣ φ} ↔ [y / x]φ) | |
4 | df-clab 2340 | . . . 4 ⊢ (y ∈ {x ∣ ψ} ↔ [y / x]ψ) | |
5 | 3, 4 | anbi12i 678 | . . 3 ⊢ ((y ∈ {x ∣ φ} ∧ y ∈ {x ∣ ψ}) ↔ ([y / x]φ ∧ [y / x]ψ)) |
6 | 1, 2, 5 | 3bitr4ri 269 | . 2 ⊢ ((y ∈ {x ∣ φ} ∧ y ∈ {x ∣ ψ}) ↔ y ∈ {x ∣ (φ ∧ ψ)}) |
7 | 6 | ineqri 3449 | 1 ⊢ ({x ∣ φ} ∩ {x ∣ ψ}) = {x ∣ (φ ∧ ψ)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 ∩ cin 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 |
This theorem is referenced by: inrab 3527 inrab2 3528 dfrab2 3530 dfrab3 3531 evenodddisj 4516 spfinex 4537 pmex 6005 nmembers1lem1 6268 |
Copyright terms: Public domain | W3C validator |