New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfuni | GIF version |
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfuni.1 | ⊢ ℲxA |
Ref | Expression |
---|---|
nfuni | ⊢ Ⅎx∪A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 3894 | . 2 ⊢ ∪A = {y ∣ ∃z ∈ A y ∈ z} | |
2 | nfuni.1 | . . . 4 ⊢ ℲxA | |
3 | nfv 1619 | . . . 4 ⊢ Ⅎx y ∈ z | |
4 | 2, 3 | nfrex 2670 | . . 3 ⊢ Ⅎx∃z ∈ A y ∈ z |
5 | 4 | nfab 2494 | . 2 ⊢ Ⅎx{y ∣ ∃z ∈ A y ∈ z} |
6 | 1, 5 | nfcxfr 2487 | 1 ⊢ Ⅎx∪A |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 ∃wrex 2616 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-uni 3893 |
This theorem is referenced by: nfiota1 4342 |
Copyright terms: Public domain | W3C validator |